{"title":"ICPINN: Integral conservation physics-informed neural networks based on adaptive activation functions for 3D blood flow simulations","authors":"Youqiong Liu , Li Cai , Yaping Chen , Qixing Chen","doi":"10.1016/j.cpc.2025.109569","DOIUrl":null,"url":null,"abstract":"<div><div>Blood flow modeling can improve our understanding of vascular pathologies, assist in designing more effective drug delivery systems, and aid in developing safe and effective medical devices. Physics-informed neural networks (PINN) have been used to simulate blood flow by encoding the nonlinear Navier–Stokes equations and training data into the neural network. However, noninvasive, real-time and accurate acquisition of hemodynamics data remains a challenge for current invasive detection and simulation algorithms. In this paper, we propose an integral conservation physics-informed neural networks (ICPINN) with adaptive activation functions to accurately predict the velocity, pressure, and wall shear stress (WSS) based on patient-specific vessel geometries without relying on any simulation data. To achieve unsupervised learning, loss function incorporates mass flow rate residuals derived from the mass conservation law, significantly enhancing the precision and effectiveness of the predictions. Moreover, a detailed comparative analysis of various weighting coefficient selection strategies and activation functions is performed, which ultimately identifies the optimal configuration for 3D blood flow simulations that achieves the lowest relative error. Numerical results demonstrate that the proposed ICPINN framework enables accurate prediction of blood flow in realistic cardiovascular geometry, and that mass flow rate is essential for complex structures, such as bifurcations, U-bend, stenosis, and aneurysms, offering potential applications in medical diagnostics and treatment planning.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"311 ","pages":"Article 109569"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000724","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Blood flow modeling can improve our understanding of vascular pathologies, assist in designing more effective drug delivery systems, and aid in developing safe and effective medical devices. Physics-informed neural networks (PINN) have been used to simulate blood flow by encoding the nonlinear Navier–Stokes equations and training data into the neural network. However, noninvasive, real-time and accurate acquisition of hemodynamics data remains a challenge for current invasive detection and simulation algorithms. In this paper, we propose an integral conservation physics-informed neural networks (ICPINN) with adaptive activation functions to accurately predict the velocity, pressure, and wall shear stress (WSS) based on patient-specific vessel geometries without relying on any simulation data. To achieve unsupervised learning, loss function incorporates mass flow rate residuals derived from the mass conservation law, significantly enhancing the precision and effectiveness of the predictions. Moreover, a detailed comparative analysis of various weighting coefficient selection strategies and activation functions is performed, which ultimately identifies the optimal configuration for 3D blood flow simulations that achieves the lowest relative error. Numerical results demonstrate that the proposed ICPINN framework enables accurate prediction of blood flow in realistic cardiovascular geometry, and that mass flow rate is essential for complex structures, such as bifurcations, U-bend, stenosis, and aneurysms, offering potential applications in medical diagnostics and treatment planning.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.