{"title":"Bioactivator insecticides for Coffeea arabica L. and toxic to Leucoptera coffeella (Lepidoptera: Lyonetiidae)","authors":"","doi":"10.1016/j.cropro.2024.106946","DOIUrl":null,"url":null,"abstract":"<div><p>The insecticides used on coffee plants can function as bioactivators for this species and be utilized to manage <em>Leucoptera coffeella</em>. Thus, the objectives were to verify the bioactivation action on the morphophysiology of the coffee plant and its toxicity to <em>L. coffeella</em>. The treatments were dinotefuran + flutriafol 450 SC, dinotefuran + pyriproxyfen (100 + 25) EW, imidacloprid 700 WG, flupyradifurone 200 SL, thiamethoxam 250 WG, thiamethoxam + cyproconazole 600 WG, and control (water). The physiology of coffee seedlings was evaluated at 10, 20, and 40 days after application (DAA) of the insecticides. Analyses of biometric variables for aerial and root development of seedlings and survival of <em>L. coffeella</em> larvae were conducted at 10, 20, 40, 60, and 80 DAA. The insecticides did not alter the physiological parameters evaluated in the seedlings at 10, 20, and 40 DAA. At 60 and 80 DAA, height and leaf area were lower in seedlings treated with imidacloprid. The dry matter of the stem in seedlings treated with imidacloprid was lower than in other treatments. The volume and area of the roots of the seedlings at 80 DAA were higher in those that received the insecticide thiamethoxam 250 WG. All insecticides were toxic to <em>L. coffeella</em> larvae at all evaluation dates. The insecticides did not have bioactivator properties for aerial development. Thiamethoxam 250 WG has a bioactivator effect on root volume and area. The insecticides protect seedlings from infestation up to 80 DAA.</p></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219424003740","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The insecticides used on coffee plants can function as bioactivators for this species and be utilized to manage Leucoptera coffeella. Thus, the objectives were to verify the bioactivation action on the morphophysiology of the coffee plant and its toxicity to L. coffeella. The treatments were dinotefuran + flutriafol 450 SC, dinotefuran + pyriproxyfen (100 + 25) EW, imidacloprid 700 WG, flupyradifurone 200 SL, thiamethoxam 250 WG, thiamethoxam + cyproconazole 600 WG, and control (water). The physiology of coffee seedlings was evaluated at 10, 20, and 40 days after application (DAA) of the insecticides. Analyses of biometric variables for aerial and root development of seedlings and survival of L. coffeella larvae were conducted at 10, 20, 40, 60, and 80 DAA. The insecticides did not alter the physiological parameters evaluated in the seedlings at 10, 20, and 40 DAA. At 60 and 80 DAA, height and leaf area were lower in seedlings treated with imidacloprid. The dry matter of the stem in seedlings treated with imidacloprid was lower than in other treatments. The volume and area of the roots of the seedlings at 80 DAA were higher in those that received the insecticide thiamethoxam 250 WG. All insecticides were toxic to L. coffeella larvae at all evaluation dates. The insecticides did not have bioactivator properties for aerial development. Thiamethoxam 250 WG has a bioactivator effect on root volume and area. The insecticides protect seedlings from infestation up to 80 DAA.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.