A review on SEM imaging of graphene layers

IF 2.5 3区 工程技术 Q1 MICROSCOPY Micron Pub Date : 2024-09-11 DOI:10.1016/j.micron.2024.103716
Li Huang , Yang Gan
{"title":"A review on SEM imaging of graphene layers","authors":"Li Huang ,&nbsp;Yang Gan","doi":"10.1016/j.micron.2024.103716","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic-thick graphene has stimulated great interests for exploring fundamental science and technological applications due to its promising electronic, mechanical and thermal properties. It is important to gain a deeper understanding of geometrical/structural characteristics of graphene and its properties/performance. Scanning electron microscopy (SEM) is indispensable for characterizing graphene layers. This review details SEM imaging of graphene layer, including the SEM image contrast mechanism of graphene layers, imaging parameter-dependent contrast of graphene layers and the influence of polycrystalline substrates on image contrast. Furthermore, a summary of SEM applications in imaging graphene layers is also provided, including layer-number determinations, study of chemical vapor deposition (CVD)-growth mechanism, and reveal of anti-corrosive failure mechanism of graphene layers. This review will provide a systematic and comprehensive understanding on SEM imaging of graphene layers for graphene community.</p></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"187 ","pages":"Article 103716"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432824001331","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic-thick graphene has stimulated great interests for exploring fundamental science and technological applications due to its promising electronic, mechanical and thermal properties. It is important to gain a deeper understanding of geometrical/structural characteristics of graphene and its properties/performance. Scanning electron microscopy (SEM) is indispensable for characterizing graphene layers. This review details SEM imaging of graphene layer, including the SEM image contrast mechanism of graphene layers, imaging parameter-dependent contrast of graphene layers and the influence of polycrystalline substrates on image contrast. Furthermore, a summary of SEM applications in imaging graphene layers is also provided, including layer-number determinations, study of chemical vapor deposition (CVD)-growth mechanism, and reveal of anti-corrosive failure mechanism of graphene layers. This review will provide a systematic and comprehensive understanding on SEM imaging of graphene layers for graphene community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯层的扫描电镜成像综述
原子厚石墨烯因其良好的电子、机械和热性能,激发了人们对基础科学和技术应用的极大兴趣。深入了解石墨烯的几何/结构特征及其特性/性能非常重要。扫描电子显微镜(SEM)是表征石墨烯层不可或缺的工具。本综述详细介绍了石墨烯层的扫描电子显微镜成像,包括石墨烯层的扫描电子显微镜图像对比机制、石墨烯层的成像参数依赖性对比度以及多晶基底对图像对比度的影响。此外,还总结了 SEM 在石墨烯层成像中的应用,包括层数测定、化学气相沉积(CVD)生长机制研究以及石墨烯层抗腐蚀破坏机制的揭示。这篇综述将为石墨烯界提供对石墨烯层 SEM 成像的系统而全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micron
Micron 工程技术-显微镜技术
CiteScore
4.30
自引率
4.20%
发文量
100
审稿时长
31 days
期刊介绍: Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.
期刊最新文献
Molecular dynamics study on the mitigation of radiation damage caused by electron pulses Structure of the trophic chamber and follicular epithelium in ovaries of the model heteropteran species Pyrrhocoris apterus Effect of Y and Zr addition on the intergranular corrosion of Al-Mg alloy after sensitization treatment Toward cancer detection by label-free microscopic imaging in oncological surgery: Techniques, instrumentation and applications Single long linear flat-top, double and triple optical beams formation by an azimuthally polarized laser light using a seven-zone BPPF system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1