Marco Dalai , Stefano Della Fiore , Adele A. Rescigno , Ugo Vaccaro
{"title":"An efficient algorithm for group testing with runlength constraints","authors":"Marco Dalai , Stefano Della Fiore , Adele A. Rescigno , Ugo Vaccaro","doi":"10.1016/j.dam.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we provide an efficient algorithm to construct almost optimal <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed codes with runlength constraints. A <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed code of length <span><math><mi>t</mi></math></span> is a <span><math><mrow><mi>t</mi><mo>×</mo><mi>n</mi></mrow></math></span> binary matrix such that any two 1’s in each column are separated by a run of at least <span><math><mi>d</mi></math></span> 0’s, and such that for any column <span><math><mi>c</mi></math></span> and any other <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> columns, there exists a row where <span><math><mi>c</mi></math></span> has 1 and all the remaining <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> columns have 0. These combinatorial structures were introduced by Agarwal et al. (2020), in the context of Non-Adaptive Group Testing algorithms with runlength constraints.</p><p>By using Moser and Tardos’ constructive version of the Lovász Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for the construction of <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed codes of length <span><math><mrow><mi>t</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mi>d</mi><mi>k</mi><mo>log</mo><mi>n</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. We also show that the length of our codes is shorter, for <span><math><mi>n</mi></math></span> sufficiently large, than that of the codes whose existence was proved in Agarwal et al. (2020).</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 181-187"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003913","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we provide an efficient algorithm to construct almost optimal -superimposed codes with runlength constraints. A -superimposed code of length is a binary matrix such that any two 1’s in each column are separated by a run of at least 0’s, and such that for any column and any other columns, there exists a row where has 1 and all the remaining columns have 0. These combinatorial structures were introduced by Agarwal et al. (2020), in the context of Non-Adaptive Group Testing algorithms with runlength constraints.
By using Moser and Tardos’ constructive version of the Lovász Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity for the construction of -superimposed codes of length . We also show that the length of our codes is shorter, for sufficiently large, than that of the codes whose existence was proved in Agarwal et al. (2020).
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.