Pub Date : 2025-03-19DOI: 10.1016/j.dam.2025.03.004
Marcel Jackiewicz, Adam Kasperski, Paweł Zieliński
In this paper, the recoverable robust shortest path problem is investigated. Discrete budgeted interval uncertainty representation is used to model uncertain second-stage arc costs. The known complexity results for this problem are strengthened. Namely, it is shown that the recoverable robust shortest path problem is -hard for the arc exclusion and arc symmetric difference neighborhoods. Furthermore, it is also proven that the inner adversarial problem for these neighborhoods is -hard.
{"title":"Computational complexity of the recoverable robust shortest path problem with discrete recourse","authors":"Marcel Jackiewicz, Adam Kasperski, Paweł Zieliński","doi":"10.1016/j.dam.2025.03.004","DOIUrl":"10.1016/j.dam.2025.03.004","url":null,"abstract":"<div><div>In this paper, the recoverable robust shortest path problem is investigated. Discrete budgeted interval uncertainty representation is used to model uncertain second-stage arc costs. The known complexity results for this problem are strengthened. Namely, it is shown that the recoverable robust shortest path problem is <span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-hard for the arc exclusion and arc symmetric difference neighborhoods. Furthermore, it is also proven that the inner adversarial problem for these neighborhoods is <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-hard.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 103-110"},"PeriodicalIF":1.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1016/j.dam.2025.02.044
Jinqiu Zhou, Xing Feng, Weigen Yan
A 3-connected graph is a brick if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick is minimal if is not a brick, for every edge of . Lovász (1983) showed that every brick is -based or -based. A brick is -free (respectively, -free) if it is not -based (respectively, -based). Kothari and Murty (2016) proved that a planar brick is -free if and only if it has precisely two odd faces and determined the list of all -free planar bricks. In this paper, we show that the -free planar (minimal) bricks have at most edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.
{"title":"K4-free planar minimal bricks with the maximum number of edges","authors":"Jinqiu Zhou, Xing Feng, Weigen Yan","doi":"10.1016/j.dam.2025.02.044","DOIUrl":"10.1016/j.dam.2025.02.044","url":null,"abstract":"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick <span><math><mi>G</mi></math></span> is <em>minimal</em> if <span><math><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></math></span> is not a brick, for every edge <span><math><mi>e</mi></math></span> of <span><math><mi>G</mi></math></span>. Lovász (1983) showed that every brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based or <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based. A brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span><em>-free</em> (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span><em>-free</em>) if it is not <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based). Kothari and Murty (2016) proved that a planar brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free if and only if it has precisely two odd faces and determined the list of all <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-free planar bricks. In this paper, we show that the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free planar (minimal) bricks <span><math><mi>G</mi></math></span> have at most <span><math><mrow><mn>2</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>3</mn></mrow></math></span> edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 92-102"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1016/j.dam.2025.02.042
Vadim E. Levit , David Tankus
<div><div>A graph <span><math><mi>G</mi></math></span> is <em>well-covered</em> if all its maximal independent sets are of the same cardinality. Assume that a weight function <span><math><mi>w</mi></math></span> is defined on the vertex set of <span><math><mi>G</mi></math></span>. Then <span><math><mi>G</mi></math></span> is <span><math><mi>w</mi></math></span><em>-well-covered</em> if all maximal independent sets are of the same weight. For every graph <span><math><mi>G</mi></math></span>, the set of weight functions <span><math><mi>w</mi></math></span> such that <span><math><mi>G</mi></math></span> is <span><math><mi>w</mi></math></span>-well-covered is a <em>vector space</em>, denoted <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>Let <span><math><mi>B</mi></math></span> be a complete bipartite induced subgraph of <span><math><mi>G</mi></math></span> on vertex sets of bipartition <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>. Then <span><math><mi>B</mi></math></span> is <em>generating</em> if there exists an independent set <span><math><mi>S</mi></math></span> such that <span><math><mrow><mi>S</mi><mo>∪</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>∪</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> are both maximal independent sets of <span><math><mi>G</mi></math></span>. In the restricted case that a generating subgraph <span><math><mi>B</mi></math></span> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span>, the unique edge in <span><math><mi>B</mi></math></span> is called a <em>relating edge</em>. Generating subgraphs play an important role in finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>Deciding whether an input graph <span><math><mi>G</mi></math></span> is well-covered is <strong>co-NP</strong>-complete. Hence, finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <strong>co-NP</strong>-hard. Deciding whether an edge is relating is <strong>NP</strong>-complete. Therefore, deciding whether a subgraph is generating is <strong>NP</strong>-complete as well.</div><div>A graph is <em>chordal</em> if every induced cycle is a triangle. It is known that finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be done polynomially in the restricted case that <span><math><mi>G</mi></math></span> is chordal. Thus, recognizing well-covered chordal graphs is a polynomial problem. We present a polynomial algorithm for recognizing relating edges and gen
{"title":"Generating subgraphs in chordal graphs","authors":"Vadim E. Levit , David Tankus","doi":"10.1016/j.dam.2025.02.042","DOIUrl":"10.1016/j.dam.2025.02.042","url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is <em>well-covered</em> if all its maximal independent sets are of the same cardinality. Assume that a weight function <span><math><mi>w</mi></math></span> is defined on the vertex set of <span><math><mi>G</mi></math></span>. Then <span><math><mi>G</mi></math></span> is <span><math><mi>w</mi></math></span><em>-well-covered</em> if all maximal independent sets are of the same weight. For every graph <span><math><mi>G</mi></math></span>, the set of weight functions <span><math><mi>w</mi></math></span> such that <span><math><mi>G</mi></math></span> is <span><math><mi>w</mi></math></span>-well-covered is a <em>vector space</em>, denoted <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>Let <span><math><mi>B</mi></math></span> be a complete bipartite induced subgraph of <span><math><mi>G</mi></math></span> on vertex sets of bipartition <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>. Then <span><math><mi>B</mi></math></span> is <em>generating</em> if there exists an independent set <span><math><mi>S</mi></math></span> such that <span><math><mrow><mi>S</mi><mo>∪</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>∪</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> are both maximal independent sets of <span><math><mi>G</mi></math></span>. In the restricted case that a generating subgraph <span><math><mi>B</mi></math></span> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span>, the unique edge in <span><math><mi>B</mi></math></span> is called a <em>relating edge</em>. Generating subgraphs play an important role in finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>Deciding whether an input graph <span><math><mi>G</mi></math></span> is well-covered is <strong>co-NP</strong>-complete. Hence, finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <strong>co-NP</strong>-hard. Deciding whether an edge is relating is <strong>NP</strong>-complete. Therefore, deciding whether a subgraph is generating is <strong>NP</strong>-complete as well.</div><div>A graph is <em>chordal</em> if every induced cycle is a triangle. It is known that finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be done polynomially in the restricted case that <span><math><mi>G</mi></math></span> is chordal. Thus, recognizing well-covered chordal graphs is a polynomial problem. We present a polynomial algorithm for recognizing relating edges and gen","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"368 ","pages":"Pages 184-189"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1016/j.dam.2025.03.003
Simone Costa , Stefano Della Fiore , Andrea Ferraguti
<div><div>Let <span><math><mrow><mi>Σ</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> be a set of positive integers with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mo>…</mo><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> such that all <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> subset sums are pairwise distinct. A famous conjecture of Erdős states that <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo><mi>C</mi><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> for some constant <span><math><mi>C</mi></math></span>, while the best result known to date is of the form <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo><mi>C</mi><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>/</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></math></span>. In this paper, we propose a generalization of the Erdős distinct sum problem that is in the same spirit as those of the Davenport and the Erdős–Ginzburg–Ziv constants recently introduced in Caro et al. (2022) and in Caro and Schmitt (2022). More precisely, we require that the non-zero evaluations of the <span><math><mi>m</mi></math></span>th degree symmetric polynomial are all distinct over the subsequences of <span><math><mi>Σ</mi></math></span> whose size is at most <span><math><mrow><mi>λ</mi><mi>n</mi></mrow></math></span>, for a given <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, considering <span><math><mi>Σ</mi></math></span> as a sequence in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> with each coordinate of each <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>M</mi><mo>]</mo></mrow></math></span>. If <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> denotes the family of subsets of <span><math><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></mrow></math></span> whose size is at most <span><math><mrow><mi>λ</mi><mi>n</mi></mrow></math></span>, our main result is that, for each <span><math><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo></mrow></math></span> and <span><math><mi>λ</mi></math></span>, there exists an explicit constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>λ</mi></mrow></msub></math></span> such that <span><math><mrow><mi>M</mi><mo>≥</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>λ</mi></mrow>
{"title":"Variants of the Erdős distinct sums problem and variance method","authors":"Simone Costa , Stefano Della Fiore , Andrea Ferraguti","doi":"10.1016/j.dam.2025.03.003","DOIUrl":"10.1016/j.dam.2025.03.003","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>Σ</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> be a set of positive integers with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mo>…</mo><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> such that all <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> subset sums are pairwise distinct. A famous conjecture of Erdős states that <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo><mi>C</mi><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> for some constant <span><math><mi>C</mi></math></span>, while the best result known to date is of the form <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo><mi>C</mi><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>/</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></math></span>. In this paper, we propose a generalization of the Erdős distinct sum problem that is in the same spirit as those of the Davenport and the Erdős–Ginzburg–Ziv constants recently introduced in Caro et al. (2022) and in Caro and Schmitt (2022). More precisely, we require that the non-zero evaluations of the <span><math><mi>m</mi></math></span>th degree symmetric polynomial are all distinct over the subsequences of <span><math><mi>Σ</mi></math></span> whose size is at most <span><math><mrow><mi>λ</mi><mi>n</mi></mrow></math></span>, for a given <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, considering <span><math><mi>Σ</mi></math></span> as a sequence in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> with each coordinate of each <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>M</mi><mo>]</mo></mrow></math></span>. If <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> denotes the family of subsets of <span><math><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></mrow></math></span> whose size is at most <span><math><mrow><mi>λ</mi><mi>n</mi></mrow></math></span>, our main result is that, for each <span><math><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo></mrow></math></span> and <span><math><mi>λ</mi></math></span>, there exists an explicit constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>λ</mi></mrow></msub></math></span> such that <span><math><mrow><mi>M</mi><mo>≥</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>λ</mi></mrow>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 110-123"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1016/j.dam.2025.03.001
E.M.M. Coelho , H. Coelho , L. Faria , M.P. Ferreira , S. Klein
An oriented -coloring of an oriented graph is a partition of into color classes, such that there is no pair of adjacent vertices belonging to the same class and all the arcs between a pair of classes have the same orientation. The smallest such that admits an oriented -coloring is the oriented chromatic number of . The -oriented chromatic number decision problem asks whether an oriented graph has oriented chromatic number at most . -oriented chromatic number is a polynomial problem, when and -complete, when even if input is acyclic and the underlying graph is bipartite, cubic and planar. In 2003, Fertin, Raspaud and Roychowdhury established exact values and bounds on the oriented chromatic number for several grid subgraph classes. But, the time complexity of -oriented chromatic number was unknown for grid subgraphs. In this work we prove that the -oriented chromatic number problem is NP-complete even if is acyclic oriented, , and the underlying graph is a connected and subcubic subgraph of a grid.
{"title":"The time complexity of oriented chromatic number for acyclic oriented connected subcubic subgraphs of grids","authors":"E.M.M. Coelho , H. Coelho , L. Faria , M.P. Ferreira , S. Klein","doi":"10.1016/j.dam.2025.03.001","DOIUrl":"10.1016/j.dam.2025.03.001","url":null,"abstract":"<div><div>An oriented <span><math><mi>k</mi></math></span>-coloring of an oriented graph <span><math><mrow><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> is a partition of <span><math><mi>V</mi></math></span> into <span><math><mi>k</mi></math></span> color classes, such that there is no pair of adjacent vertices belonging to the same class and all the arcs between a pair of classes have the same orientation. The smallest <span><math><mi>k</mi></math></span> such that <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> admits an oriented <span><math><mi>k</mi></math></span>-coloring is the oriented chromatic number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>. The <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> decision problem asks whether an oriented graph <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> has oriented chromatic number at most <span><math><mi>k</mi></math></span>. <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> is a polynomial problem, when <span><math><mrow><mi>k</mi><mo>≤</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>N</mi><mi>P</mi></mrow></math></span>-complete, when <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span> even if input <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is acyclic and the underlying graph <span><math><mi>G</mi></math></span> is bipartite, cubic and planar. In 2003, Fertin, Raspaud and Roychowdhury established exact values and bounds on the oriented chromatic number for several grid subgraph classes. But, the time complexity of <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> was unknown for grid subgraphs. In this work we prove that the <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> problem is NP-complete even if <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is acyclic oriented, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, and the underlying graph <span><math><mi>G</mi></math></span> is a connected and subcubic subgraph of a grid.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 96-109"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-15DOI: 10.1016/j.dam.2025.03.005
Seunghun Lee
For a graph , we call an edge coloring of an improper interval edge coloring if for every the colors, which are integers, of the edges incident with form an integral interval. The interval coloring impropriety of , denoted by , is the smallest value such that has an improper interval edge coloring where at most edges of with a common endpoint have the same color.
The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove for every outerplanar graph . This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each , the interval coloring impropriety of -trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.
{"title":"The interval coloring impropriety of planar graphs","authors":"Seunghun Lee","doi":"10.1016/j.dam.2025.03.005","DOIUrl":"10.1016/j.dam.2025.03.005","url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, we call an edge coloring of <span><math><mi>G</mi></math></span> an <em>improper interval edge coloring</em> if for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the colors, which are integers, of the edges incident with <span><math><mi>v</mi></math></span> form an integral interval. The <em>interval coloring impropriety</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest value <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has an improper interval edge coloring where at most <span><math><mi>k</mi></math></span> edges of <span><math><mi>G</mi></math></span> with a common endpoint have the same color.</div><div>The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span> for every outerplanar graph <span><math><mi>G</mi></math></span>. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the interval coloring impropriety of <span><math><mi>k</mi></math></span>-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 88-91"},"PeriodicalIF":1.0,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-14DOI: 10.1016/j.dam.2025.02.043
Rong Chen , Kaiyang Lan , Xinheng Lin , Yidong Zhou
In this paper, we prove that for each connected odd-hole-free graph , if and only if is not isomorphic to the complement of .
{"title":"The chromatic number of odd-hole-free graphs","authors":"Rong Chen , Kaiyang Lan , Xinheng Lin , Yidong Zhou","doi":"10.1016/j.dam.2025.02.043","DOIUrl":"10.1016/j.dam.2025.02.043","url":null,"abstract":"<div><div>In this paper, we prove that for each connected odd-hole-free graph <span><math><mi>G</mi></math></span>, <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> if and only if <span><math><mi>G</mi></math></span> is not isomorphic to the complement of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>7</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 84-87"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-14DOI: 10.1016/j.dam.2025.03.009
Yongjiang Wu, Lihua Feng, Weijun Liu
In this paper, we provide a new proof for the Ihara expression of the alternating -function of a digraph. Furthermore, we present a relation between the weighted alternating -function of a digraph and that of the quotient of its regular covering. As an application, we give a decomposition formula for the weighted alternating zeta function of the quotient of a regular covering of a digraph by its weighted alternating -functions.
{"title":"Alternating L-functions of finite digraphs","authors":"Yongjiang Wu, Lihua Feng, Weijun Liu","doi":"10.1016/j.dam.2025.03.009","DOIUrl":"10.1016/j.dam.2025.03.009","url":null,"abstract":"<div><div>In this paper, we provide a new proof for the Ihara expression of the alternating <span><math><mi>L</mi></math></span>-function of a digraph. Furthermore, we present a relation between the weighted alternating <span><math><mi>L</mi></math></span>-function of a digraph and that of the quotient of its regular covering. As an application, we give a decomposition formula for the weighted alternating zeta function of the quotient of a regular covering of a digraph by its weighted alternating <span><math><mi>L</mi></math></span>-functions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 34-49"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-14DOI: 10.1016/j.dam.2025.03.007
Alexander Karpov , Klas Markström , Søren Riis , Bei Zhou
In this paper, we study Condorcet domains, sets of linear orders from which majority ranking produces a linear order. We introduce a new class of Condorcet domains, called coherent domains, which is natural from both a voting theoretic and combinatorial perspective. After studying the properties of these domains we introduce set-alternating schemes. This is a method for constructing well-behaved coherent domains. Using this we show that, for sufficiently large numbers of alternatives , there are coherent domains of size more than . This improves the best existing asymptotic lower bounds for the size of the largest general Condorcet domains.
{"title":"Coherent domains and improved lower bounds for the maximum size of Condorcet domains","authors":"Alexander Karpov , Klas Markström , Søren Riis , Bei Zhou","doi":"10.1016/j.dam.2025.03.007","DOIUrl":"10.1016/j.dam.2025.03.007","url":null,"abstract":"<div><div>In this paper, we study Condorcet domains, sets of linear orders from which majority ranking produces a linear order. We introduce a new class of Condorcet domains, called <em>coherent</em> domains, which is natural from both a voting theoretic and combinatorial perspective. After studying the properties of these domains we introduce set-alternating schemes. This is a method for constructing well-behaved coherent domains. Using this we show that, for sufficiently large numbers of alternatives <span><math><mi>n</mi></math></span>, there are coherent domains of size more than <span><math><mrow><mn>2</mn><mo>.</mo><mn>197</mn><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. This improves the best existing asymptotic lower bounds for the size of the largest general Condorcet domains.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 57-70"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-14DOI: 10.1016/j.dam.2025.03.006
Xiaolan Hu, Guixian Zhang
An injective -edge coloring of a graph is a -edge coloring of such that for any three consecutive edges and of a path or a triangle. The injective edge chromatic index of is the smallest value of such that has an injective -edge coloring. Let and denote the maximum average degree and the maximum degree of a graph , respectively. In this paper we show that if and , then ; and if and , then .
{"title":"Injective edge chromatic index of sparse graphs","authors":"Xiaolan Hu, Guixian Zhang","doi":"10.1016/j.dam.2025.03.006","DOIUrl":"10.1016/j.dam.2025.03.006","url":null,"abstract":"<div><div>An injective <span><math><mi>k</mi></math></span>-edge coloring of a graph <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span>-edge coloring <span><math><mi>ϕ</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≠</mo><mi>ϕ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> for any three consecutive edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> of a path or a triangle. The injective edge chromatic index <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the smallest value of <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has an injective <span><math><mi>k</mi></math></span>-edge coloring. Let <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum average degree and the maximum degree of a graph <span><math><mi>G</mi></math></span>, respectively. In this paper we show that if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>; and if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 50-56"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}