首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
Computational complexity of the recoverable robust shortest path problem with discrete recourse
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-19 DOI: 10.1016/j.dam.2025.03.004
Marcel Jackiewicz, Adam Kasperski, Paweł Zieliński
In this paper, the recoverable robust shortest path problem is investigated. Discrete budgeted interval uncertainty representation is used to model uncertain second-stage arc costs. The known complexity results for this problem are strengthened. Namely, it is shown that the recoverable robust shortest path problem is Σ3p-hard for the arc exclusion and arc symmetric difference neighborhoods. Furthermore, it is also proven that the inner adversarial problem for these neighborhoods is Π2p-hard.
{"title":"Computational complexity of the recoverable robust shortest path problem with discrete recourse","authors":"Marcel Jackiewicz,&nbsp;Adam Kasperski,&nbsp;Paweł Zieliński","doi":"10.1016/j.dam.2025.03.004","DOIUrl":"10.1016/j.dam.2025.03.004","url":null,"abstract":"<div><div>In this paper, the recoverable robust shortest path problem is investigated. Discrete budgeted interval uncertainty representation is used to model uncertain second-stage arc costs. The known complexity results for this problem are strengthened. Namely, it is shown that the recoverable robust shortest path problem is <span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-hard for the arc exclusion and arc symmetric difference neighborhoods. Furthermore, it is also proven that the inner adversarial problem for these neighborhoods is <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-hard.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 103-110"},"PeriodicalIF":1.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K4-free planar minimal bricks with the maximum number of edges
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-18 DOI: 10.1016/j.dam.2025.02.044
Jinqiu Zhou, Xing Feng, Weigen Yan
A 3-connected graph is a brick if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick G is minimal if Ge is not a brick, for every edge e of G. Lovász (1983) showed that every brick is K4-based or C¯6-based. A brick is K4-free (respectively, C¯6-free) if it is not K4-based (respectively, C¯6-based). Kothari and Murty (2016) proved that a planar brick is K4-free if and only if it has precisely two odd faces and determined the list of all C¯6-free planar bricks. In this paper, we show that the K4-free planar (minimal) bricks G have at most 2|V(G)|3 edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.
{"title":"K4-free planar minimal bricks with the maximum number of edges","authors":"Jinqiu Zhou,&nbsp;Xing Feng,&nbsp;Weigen Yan","doi":"10.1016/j.dam.2025.02.044","DOIUrl":"10.1016/j.dam.2025.02.044","url":null,"abstract":"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick <span><math><mi>G</mi></math></span> is <em>minimal</em> if <span><math><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></math></span> is not a brick, for every edge <span><math><mi>e</mi></math></span> of <span><math><mi>G</mi></math></span>. Lovász (1983) showed that every brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based or <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based. A brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span><em>-free</em> (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span><em>-free</em>) if it is not <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based). Kothari and Murty (2016) proved that a planar brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free if and only if it has precisely two odd faces and determined the list of all <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-free planar bricks. In this paper, we show that the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free planar (minimal) bricks <span><math><mi>G</mi></math></span> have at most <span><math><mrow><mn>2</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>3</mn></mrow></math></span> edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 92-102"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143644991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating subgraphs in chordal graphs
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-18 DOI: 10.1016/j.dam.2025.02.042
Vadim E. Levit , David Tankus
<div><div>A graph <span><math><mi>G</mi></math></span> is <em>well-covered</em> if all its maximal independent sets are of the same cardinality. Assume that a weight function <span><math><mi>w</mi></math></span> is defined on the vertex set of <span><math><mi>G</mi></math></span>. Then <span><math><mi>G</mi></math></span> is <span><math><mi>w</mi></math></span><em>-well-covered</em> if all maximal independent sets are of the same weight. For every graph <span><math><mi>G</mi></math></span>, the set of weight functions <span><math><mi>w</mi></math></span> such that <span><math><mi>G</mi></math></span> is <span><math><mi>w</mi></math></span>-well-covered is a <em>vector space</em>, denoted <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>Let <span><math><mi>B</mi></math></span> be a complete bipartite induced subgraph of <span><math><mi>G</mi></math></span> on vertex sets of bipartition <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>. Then <span><math><mi>B</mi></math></span> is <em>generating</em> if there exists an independent set <span><math><mi>S</mi></math></span> such that <span><math><mrow><mi>S</mi><mo>∪</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>∪</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> are both maximal independent sets of <span><math><mi>G</mi></math></span>. In the restricted case that a generating subgraph <span><math><mi>B</mi></math></span> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span>, the unique edge in <span><math><mi>B</mi></math></span> is called a <em>relating edge</em>. Generating subgraphs play an important role in finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>Deciding whether an input graph <span><math><mi>G</mi></math></span> is well-covered is <strong>co-NP</strong>-complete. Hence, finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is <strong>co-NP</strong>-hard. Deciding whether an edge is relating is <strong>NP</strong>-complete. Therefore, deciding whether a subgraph is generating is <strong>NP</strong>-complete as well.</div><div>A graph is <em>chordal</em> if every induced cycle is a triangle. It is known that finding <span><math><mrow><mi>W</mi><mi>C</mi><mi>W</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> can be done polynomially in the restricted case that <span><math><mi>G</mi></math></span> is chordal. Thus, recognizing well-covered chordal graphs is a polynomial problem. We present a polynomial algorithm for recognizing relating edges and gen
{"title":"Generating subgraphs in chordal graphs","authors":"Vadim E. Levit ,&nbsp;David Tankus","doi":"10.1016/j.dam.2025.02.042","DOIUrl":"10.1016/j.dam.2025.02.042","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;well-covered&lt;/em&gt; if all its maximal independent sets are of the same cardinality. Assume that a weight function &lt;span&gt;&lt;math&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is defined on the vertex set of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Then &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-well-covered&lt;/em&gt; if all maximal independent sets are of the same weight. For every graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the set of weight functions &lt;span&gt;&lt;math&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-well-covered is a &lt;em&gt;vector space&lt;/em&gt;, denoted &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a complete bipartite induced subgraph of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; on vertex sets of bipartition &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Then &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;generating&lt;/em&gt; if there exists an independent set &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are both maximal independent sets of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In the restricted case that a generating subgraph &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is isomorphic to &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, the unique edge in &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is called a &lt;em&gt;relating edge&lt;/em&gt;. Generating subgraphs play an important role in finding &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;Deciding whether an input graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is well-covered is &lt;strong&gt;co-NP&lt;/strong&gt;-complete. Hence, finding &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is &lt;strong&gt;co-NP&lt;/strong&gt;-hard. Deciding whether an edge is relating is &lt;strong&gt;NP&lt;/strong&gt;-complete. Therefore, deciding whether a subgraph is generating is &lt;strong&gt;NP&lt;/strong&gt;-complete as well.&lt;/div&gt;&lt;div&gt;A graph is &lt;em&gt;chordal&lt;/em&gt; if every induced cycle is a triangle. It is known that finding &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; can be done polynomially in the restricted case that &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is chordal. Thus, recognizing well-covered chordal graphs is a polynomial problem. We present a polynomial algorithm for recognizing relating edges and gen","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"368 ","pages":"Pages 184-189"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variants of the Erdős distinct sums problem and variance method
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-18 DOI: 10.1016/j.dam.2025.03.003
Simone Costa , Stefano Della Fiore , Andrea Ferraguti
<div><div>Let <span><math><mrow><mi>Σ</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> be a set of positive integers with <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mo>…</mo><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> such that all <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> subset sums are pairwise distinct. A famous conjecture of Erdős states that <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo><mi>C</mi><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> for some constant <span><math><mi>C</mi></math></span>, while the best result known to date is of the form <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo><mi>C</mi><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>/</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></math></span>. In this paper, we propose a generalization of the Erdős distinct sum problem that is in the same spirit as those of the Davenport and the Erdős–Ginzburg–Ziv constants recently introduced in Caro et al. (2022) and in Caro and Schmitt (2022). More precisely, we require that the non-zero evaluations of the <span><math><mi>m</mi></math></span>th degree symmetric polynomial are all distinct over the subsequences of <span><math><mi>Σ</mi></math></span> whose size is at most <span><math><mrow><mi>λ</mi><mi>n</mi></mrow></math></span>, for a given <span><math><mrow><mi>λ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, considering <span><math><mi>Σ</mi></math></span> as a sequence in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> with each coordinate of each <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>M</mi><mo>]</mo></mrow></math></span>. If <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> denotes the family of subsets of <span><math><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></mrow></math></span> whose size is at most <span><math><mrow><mi>λ</mi><mi>n</mi></mrow></math></span>, our main result is that, for each <span><math><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo></mrow></math></span> and <span><math><mi>λ</mi></math></span>, there exists an explicit constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>λ</mi></mrow></msub></math></span> such that <span><math><mrow><mi>M</mi><mo>≥</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>λ</mi></mrow>
{"title":"Variants of the Erdős distinct sums problem and variance method","authors":"Simone Costa ,&nbsp;Stefano Della Fiore ,&nbsp;Andrea Ferraguti","doi":"10.1016/j.dam.2025.03.003","DOIUrl":"10.1016/j.dam.2025.03.003","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a set of positive integers with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that all &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; subset sums are pairwise distinct. A famous conjecture of Erdős states that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some constant &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, while the best result known to date is of the form &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we propose a generalization of the Erdős distinct sum problem that is in the same spirit as those of the Davenport and the Erdős–Ginzburg–Ziv constants recently introduced in Caro et al. (2022) and in Caro and Schmitt (2022). More precisely, we require that the non-zero evaluations of the &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th degree symmetric polynomial are all distinct over the subsequences of &lt;span&gt;&lt;math&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; whose size is at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for a given &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, considering &lt;span&gt;&lt;math&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; as a sequence in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with each coordinate of each &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. If &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; denotes the family of subsets of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; whose size is at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, our main result is that, for each &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, there exists an explicit constant &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 110-123"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The time complexity of oriented chromatic number for acyclic oriented connected subcubic subgraphs of grids
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-18 DOI: 10.1016/j.dam.2025.03.001
E.M.M. Coelho , H. Coelho , L. Faria , M.P. Ferreira , S. Klein
An oriented k-coloring of an oriented graph G=(V,A) is a partition of V into k color classes, such that there is no pair of adjacent vertices belonging to the same class and all the arcs between a pair of classes have the same orientation. The smallest k such that G admits an oriented k-coloring is the oriented chromatic number χo(G) of G. The k-oriented chromatic number decision problem asks whether an oriented graph G has oriented chromatic number at most k. k-oriented chromatic number is a polynomial problem, when k3 and NP-complete, when k4 even if input G is acyclic and the underlying graph G is bipartite, cubic and planar. In 2003, Fertin, Raspaud and Roychowdhury established exact values and bounds on the oriented chromatic number for several grid subgraph classes. But, the time complexity of k-oriented chromatic number was unknown for grid subgraphs. In this work we prove that the k-oriented chromatic number problem is NP-complete even if G is acyclic oriented, k4, and the underlying graph G is a connected and subcubic subgraph of a grid.
{"title":"The time complexity of oriented chromatic number for acyclic oriented connected subcubic subgraphs of grids","authors":"E.M.M. Coelho ,&nbsp;H. Coelho ,&nbsp;L. Faria ,&nbsp;M.P. Ferreira ,&nbsp;S. Klein","doi":"10.1016/j.dam.2025.03.001","DOIUrl":"10.1016/j.dam.2025.03.001","url":null,"abstract":"<div><div>An oriented <span><math><mi>k</mi></math></span>-coloring of an oriented graph <span><math><mrow><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> is a partition of <span><math><mi>V</mi></math></span> into <span><math><mi>k</mi></math></span> color classes, such that there is no pair of adjacent vertices belonging to the same class and all the arcs between a pair of classes have the same orientation. The smallest <span><math><mi>k</mi></math></span> such that <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> admits an oriented <span><math><mi>k</mi></math></span>-coloring is the oriented chromatic number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>. The <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> decision problem asks whether an oriented graph <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> has oriented chromatic number at most <span><math><mi>k</mi></math></span>. <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> is a polynomial problem, when <span><math><mrow><mi>k</mi><mo>≤</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>N</mi><mi>P</mi></mrow></math></span>-complete, when <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span> even if input <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is acyclic and the underlying graph <span><math><mi>G</mi></math></span> is bipartite, cubic and planar. In 2003, Fertin, Raspaud and Roychowdhury established exact values and bounds on the oriented chromatic number for several grid subgraph classes. But, the time complexity of <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> was unknown for grid subgraphs. In this work we prove that the <span><math><mi>k</mi></math></span>-<span>oriented chromatic number</span> problem is NP-complete even if <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is acyclic oriented, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, and the underlying graph <span><math><mi>G</mi></math></span> is a connected and subcubic subgraph of a grid.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 96-109"},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interval coloring impropriety of planar graphs
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-15 DOI: 10.1016/j.dam.2025.03.005
Seunghun Lee
For a graph G, we call an edge coloring of G an improper interval edge coloring if for every vV(G) the colors, which are integers, of the edges incident with v form an integral interval. The interval coloring impropriety of G, denoted by μint(G), is the smallest value k such that G has an improper interval edge coloring where at most k edges of G with a common endpoint have the same color.
The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove μint(G)2 for every outerplanar graph G. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each k2, the interval coloring impropriety of k-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.
{"title":"The interval coloring impropriety of planar graphs","authors":"Seunghun Lee","doi":"10.1016/j.dam.2025.03.005","DOIUrl":"10.1016/j.dam.2025.03.005","url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, we call an edge coloring of <span><math><mi>G</mi></math></span> an <em>improper interval edge coloring</em> if for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the colors, which are integers, of the edges incident with <span><math><mi>v</mi></math></span> form an integral interval. The <em>interval coloring impropriety</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest value <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has an improper interval edge coloring where at most <span><math><mi>k</mi></math></span> edges of <span><math><mi>G</mi></math></span> with a common endpoint have the same color.</div><div>The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span> for every outerplanar graph <span><math><mi>G</mi></math></span>. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the interval coloring impropriety of <span><math><mi>k</mi></math></span>-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 88-91"},"PeriodicalIF":1.0,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chromatic number of odd-hole-free graphs
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-14 DOI: 10.1016/j.dam.2025.02.043
Rong Chen , Kaiyang Lan , Xinheng Lin , Yidong Zhou
In this paper, we prove that for each connected odd-hole-free graph G, χ(G)max{Δ(G)1,ω(G)} if and only if G is not isomorphic to the complement of C7.
{"title":"The chromatic number of odd-hole-free graphs","authors":"Rong Chen ,&nbsp;Kaiyang Lan ,&nbsp;Xinheng Lin ,&nbsp;Yidong Zhou","doi":"10.1016/j.dam.2025.02.043","DOIUrl":"10.1016/j.dam.2025.02.043","url":null,"abstract":"<div><div>In this paper, we prove that for each connected odd-hole-free graph <span><math><mi>G</mi></math></span>, <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span> if and only if <span><math><mi>G</mi></math></span> is not isomorphic to the complement of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>7</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 84-87"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternating L-functions of finite digraphs
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-14 DOI: 10.1016/j.dam.2025.03.009
Yongjiang Wu, Lihua Feng, Weijun Liu
In this paper, we provide a new proof for the Ihara expression of the alternating L-function of a digraph. Furthermore, we present a relation between the weighted alternating L-function of a digraph and that of the quotient of its regular covering. As an application, we give a decomposition formula for the weighted alternating zeta function of the quotient of a regular covering of a digraph by its weighted alternating L-functions.
{"title":"Alternating L-functions of finite digraphs","authors":"Yongjiang Wu,&nbsp;Lihua Feng,&nbsp;Weijun Liu","doi":"10.1016/j.dam.2025.03.009","DOIUrl":"10.1016/j.dam.2025.03.009","url":null,"abstract":"<div><div>In this paper, we provide a new proof for the Ihara expression of the alternating <span><math><mi>L</mi></math></span>-function of a digraph. Furthermore, we present a relation between the weighted alternating <span><math><mi>L</mi></math></span>-function of a digraph and that of the quotient of its regular covering. As an application, we give a decomposition formula for the weighted alternating zeta function of the quotient of a regular covering of a digraph by its weighted alternating <span><math><mi>L</mi></math></span>-functions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 34-49"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent domains and improved lower bounds for the maximum size of Condorcet domains
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-14 DOI: 10.1016/j.dam.2025.03.007
Alexander Karpov , Klas Markström , Søren Riis , Bei Zhou
In this paper, we study Condorcet domains, sets of linear orders from which majority ranking produces a linear order. We introduce a new class of Condorcet domains, called coherent domains, which is natural from both a voting theoretic and combinatorial perspective. After studying the properties of these domains we introduce set-alternating schemes. This is a method for constructing well-behaved coherent domains. Using this we show that, for sufficiently large numbers of alternatives n, there are coherent domains of size more than 2.1973n. This improves the best existing asymptotic lower bounds for the size of the largest general Condorcet domains.
{"title":"Coherent domains and improved lower bounds for the maximum size of Condorcet domains","authors":"Alexander Karpov ,&nbsp;Klas Markström ,&nbsp;Søren Riis ,&nbsp;Bei Zhou","doi":"10.1016/j.dam.2025.03.007","DOIUrl":"10.1016/j.dam.2025.03.007","url":null,"abstract":"<div><div>In this paper, we study Condorcet domains, sets of linear orders from which majority ranking produces a linear order. We introduce a new class of Condorcet domains, called <em>coherent</em> domains, which is natural from both a voting theoretic and combinatorial perspective. After studying the properties of these domains we introduce set-alternating schemes. This is a method for constructing well-behaved coherent domains. Using this we show that, for sufficiently large numbers of alternatives <span><math><mi>n</mi></math></span>, there are coherent domains of size more than <span><math><mrow><mn>2</mn><mo>.</mo><mn>197</mn><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. This improves the best existing asymptotic lower bounds for the size of the largest general Condorcet domains.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 57-70"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injective edge chromatic index of sparse graphs
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-03-14 DOI: 10.1016/j.dam.2025.03.006
Xiaolan Hu, Guixian Zhang
An injective k-edge coloring of a graph G is a k-edge coloring ϕ of G such that ϕ(e1)ϕ(e3) for any three consecutive edges e1,e2 and e3 of a path or a triangle. The injective edge chromatic index χi(G) of G is the smallest value of k such that G has an injective k-edge coloring. Let mad(G) and Δ(G) denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper we show that if Δ(G)3 and mad(G)<73, then χi(G)Δ(G)+1; and if Δ(G)3 and mad(G)<52, then χi(G)Δ(G)+2.
{"title":"Injective edge chromatic index of sparse graphs","authors":"Xiaolan Hu,&nbsp;Guixian Zhang","doi":"10.1016/j.dam.2025.03.006","DOIUrl":"10.1016/j.dam.2025.03.006","url":null,"abstract":"<div><div>An injective <span><math><mi>k</mi></math></span>-edge coloring of a graph <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span>-edge coloring <span><math><mi>ϕ</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>≠</mo><mi>ϕ</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> for any three consecutive edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> of a path or a triangle. The injective edge chromatic index <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the smallest value of <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has an injective <span><math><mi>k</mi></math></span>-edge coloring. Let <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum average degree and the maximum degree of a graph <span><math><mi>G</mi></math></span>, respectively. In this paper we show that if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&lt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>; and if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&lt;</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 50-56"},"PeriodicalIF":1.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1