{"title":"Fracture and size effect in mechanical metamaterials","authors":"J. Ulloa , M.P. Ariza , J.E. Andrade , M. Ortiz","doi":"10.1016/j.jmps.2024.105860","DOIUrl":null,"url":null,"abstract":"<div><p>We resort to variational methods to evaluate the asymptotic behavior of fine metamaterials as a function of cell size. To zeroth order, the metamaterial behaves as a micropolar continuum with both displacement and rotation degrees of freedom, but exhibits linear-elastic fracture mechanics scaling and therefore no size effect. To higher order, the overall energetics of the metastructure can be characterized explicitly in terms of the solution of the zeroth-order continuum problem by the method of <span><math><mi>Γ</mi></math></span>-expansion. We present explicit expressions of the second-order correction for octet frames. As an application, we evaluate the compliance of double-cantilever octet specimens to second order and use the result to elucidate the dependence of the apparent toughness of the specimen on cell size. The analysis predicts the discreteness of the metamaterial lattice to effectively shield the crack-tip, a mechanism that we term <em>lattice shielding</em>. The theory specifically predicts <em>anti-shielding</em>, i. e., <em>coarser is weaker</em>, in agreement with recent experimental observations.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105860"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003260","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We resort to variational methods to evaluate the asymptotic behavior of fine metamaterials as a function of cell size. To zeroth order, the metamaterial behaves as a micropolar continuum with both displacement and rotation degrees of freedom, but exhibits linear-elastic fracture mechanics scaling and therefore no size effect. To higher order, the overall energetics of the metastructure can be characterized explicitly in terms of the solution of the zeroth-order continuum problem by the method of -expansion. We present explicit expressions of the second-order correction for octet frames. As an application, we evaluate the compliance of double-cantilever octet specimens to second order and use the result to elucidate the dependence of the apparent toughness of the specimen on cell size. The analysis predicts the discreteness of the metamaterial lattice to effectively shield the crack-tip, a mechanism that we term lattice shielding. The theory specifically predicts anti-shielding, i. e., coarser is weaker, in agreement with recent experimental observations.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.