Ezra Haaf , Pierre Wikby , Ayman Abed , Jonas Sundell , Eric McGivney , Lars Rosén , Minna Karstunen
{"title":"A metamodel for estimating time-dependent groundwater-induced subsidence at large scales","authors":"Ezra Haaf , Pierre Wikby , Ayman Abed , Jonas Sundell , Eric McGivney , Lars Rosén , Minna Karstunen","doi":"10.1016/j.enggeo.2024.107705","DOIUrl":null,"url":null,"abstract":"<div><p>Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-geomechanical numerical models can provide estimates of subsidence, caused by the complex time-dependent processes of creep and consolidation, thereby increasing our understanding of when and where deformations will arise and at what magnitude. However, such hydro-mechanical models are computationally expensive and generally not feasible at larger scales, where decisions are made on design and mitigation. Therefore, a computationally efficient Machine Learning-based metamodel is implemented, which emulates 2D finite element scenario-based simulations of ground deformations with the advanced Creep-SCLAY-1S-model. The metamodel employs decision tree-based ensemble learners random forest (RF) and extreme gradient boosting (XGB), with spatially explicit hydrostratigraphic data as features. In a case study in Central Gothenburg, Sweden, the metamodel shows high predictive skill (Pearson's r of 0.9–0.98) on 25 % of unseen data and good agreement with the numerical model on unseen cross-sections. Through interpretable Machine Learning, Shapley analysis provides insights into the workings of the metamodel, which alignes with process understanding. The approach provides a novel tool for efficient, scenario-based decision support on large scales based on an advanced soil model emulated by a physically plausible metamodel.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"341 ","pages":"Article 107705"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0013795224003053/pdfft?md5=780aef17f9ed331c81fc91a4c86b8708&pid=1-s2.0-S0013795224003053-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003053","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-geomechanical numerical models can provide estimates of subsidence, caused by the complex time-dependent processes of creep and consolidation, thereby increasing our understanding of when and where deformations will arise and at what magnitude. However, such hydro-mechanical models are computationally expensive and generally not feasible at larger scales, where decisions are made on design and mitigation. Therefore, a computationally efficient Machine Learning-based metamodel is implemented, which emulates 2D finite element scenario-based simulations of ground deformations with the advanced Creep-SCLAY-1S-model. The metamodel employs decision tree-based ensemble learners random forest (RF) and extreme gradient boosting (XGB), with spatially explicit hydrostratigraphic data as features. In a case study in Central Gothenburg, Sweden, the metamodel shows high predictive skill (Pearson's r of 0.9–0.98) on 25 % of unseen data and good agreement with the numerical model on unseen cross-sections. Through interpretable Machine Learning, Shapley analysis provides insights into the workings of the metamodel, which alignes with process understanding. The approach provides a novel tool for efficient, scenario-based decision support on large scales based on an advanced soil model emulated by a physically plausible metamodel.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.