Mingxuan Li, Yen Hang Zhou, Lunwei Zhang, Tiemin Li, Yao Jiang
{"title":"OneTip: A soft tactile interface for 6-D fingertip pose acquisition in human-computer interaction","authors":"Mingxuan Li, Yen Hang Zhou, Lunwei Zhang, Tiemin Li, Yao Jiang","doi":"10.1016/j.sna.2024.115896","DOIUrl":null,"url":null,"abstract":"<div><p>Advances in display technology have created the need for more efficient and natural multi-degree-of-freedom interaction devices. The movement of a single fingertip has six degrees of freedom (DOFs), but traditional rigid touchscreens usually sense only 2-D information. This article proposes a new deformable tactile interface, OneTip, for single-fingertip human-computer interaction with 6 DOFs. It is manufactured based on the principle of vision-based tactile sensing using virtual stereoscopic cameras, and its size is about twice that of a thumb. The contact surface of OneTip has a specially designed structure and material to mimic the sensitivity and softness of human skin. Also, OneTip employs a new sensing method to address the problem of soft fingertip pose estimation (measuring relative change only) with incipient slip effects. Experiments show that OneTip has good 6-D pose estimation accuracy, with root mean square errors (RMSE) of translation and rotation not exceeding 0.1 mm and 2.6°, respectively, within the linear interval (x and y: <span><math><mo>−</mo></math></span>1.2–1.2 mm; z: 0–3 mm; yaw: <span><math><mo>−</mo></math></span>15–15 deg; pitch and roll: <span><math><mo>−</mo></math></span>40–40 deg). Experiments were also conducted to explore the application of OneTip in typical virtual manipulation tasks and the possibility of combining it with other interaction devices.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115896"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008902","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in display technology have created the need for more efficient and natural multi-degree-of-freedom interaction devices. The movement of a single fingertip has six degrees of freedom (DOFs), but traditional rigid touchscreens usually sense only 2-D information. This article proposes a new deformable tactile interface, OneTip, for single-fingertip human-computer interaction with 6 DOFs. It is manufactured based on the principle of vision-based tactile sensing using virtual stereoscopic cameras, and its size is about twice that of a thumb. The contact surface of OneTip has a specially designed structure and material to mimic the sensitivity and softness of human skin. Also, OneTip employs a new sensing method to address the problem of soft fingertip pose estimation (measuring relative change only) with incipient slip effects. Experiments show that OneTip has good 6-D pose estimation accuracy, with root mean square errors (RMSE) of translation and rotation not exceeding 0.1 mm and 2.6°, respectively, within the linear interval (x and y: 1.2–1.2 mm; z: 0–3 mm; yaw: 15–15 deg; pitch and roll: 40–40 deg). Experiments were also conducted to explore the application of OneTip in typical virtual manipulation tasks and the possibility of combining it with other interaction devices.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...