Two-stage learning scatter search algorithm for the distributed hybrid flow shop scheduling problem with machine breakdown

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2024-09-13 DOI:10.1016/j.eswa.2024.125344
{"title":"Two-stage learning scatter search algorithm for the distributed hybrid flow shop scheduling problem with machine breakdown","authors":"","doi":"10.1016/j.eswa.2024.125344","DOIUrl":null,"url":null,"abstract":"<div><p>The distributed hybrid flow shop scheduling problem with machine breakdown is investigated to reduce the negative impact on real production caused by machine breakdown events. (DHFSPMB). DHFSPMB comprises two subproblems: the maintenance problem with machine breakdown and the distributed hybrid flow shop scheduling problem (DHFSP). A rescheduling method is designed to address the maintenance problem. Subsequently, a two-stage learning scatter search (TLSS) algorithm is proposed for optimizing the DHFSP when the machines break down. Firstly, a mixed integer programming model for DHFSPMB is constructed. Secondly, TLSS employs an improved reinforcement learning approach to enhance the capability of exploration by guiding the direction of global search. A two-stage approach is designed to address the lack of knowledge in the early periods of learning. Finally, a hybrid search strategy is devised to enhance the development capability of TLSS. The experimental results demonstrate that the TLSS algorithm outperforms the comparison algorithms in effectively addressing the DHFSPMB.</p></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424022115","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The distributed hybrid flow shop scheduling problem with machine breakdown is investigated to reduce the negative impact on real production caused by machine breakdown events. (DHFSPMB). DHFSPMB comprises two subproblems: the maintenance problem with machine breakdown and the distributed hybrid flow shop scheduling problem (DHFSP). A rescheduling method is designed to address the maintenance problem. Subsequently, a two-stage learning scatter search (TLSS) algorithm is proposed for optimizing the DHFSP when the machines break down. Firstly, a mixed integer programming model for DHFSPMB is constructed. Secondly, TLSS employs an improved reinforcement learning approach to enhance the capability of exploration by guiding the direction of global search. A two-stage approach is designed to address the lack of knowledge in the early periods of learning. Finally, a hybrid search strategy is devised to enhance the development capability of TLSS. The experimental results demonstrate that the TLSS algorithm outperforms the comparison algorithms in effectively addressing the DHFSPMB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带机器故障的分布式混合流程车间调度问题的两阶段学习散点搜索算法
研究了带有机器故障的分布式混合流程车间调度问题,以减少机器故障事件对实际生产造成的负面影响。(DHFSPMB)。DHFSPMB 包括两个子问题:带机器故障的维护问题和分布式混合流程车间调度问题 (DHFSP)。设计了一种重新调度方法来解决维护问题。随后,提出了一种两阶段学习散点搜索(TLSS)算法,用于优化机器故障时的 DHFSP。首先,构建了 DHFSPMB 的混合整数编程模型。其次,TLSS 采用改进的强化学习方法,通过引导全局搜索方向来增强探索能力。设计了一种两阶段方法来解决学习初期的知识匮乏问题。最后,设计了一种混合搜索策略,以增强 TLSS 的开发能力。实验结果表明,TLSS 算法在有效处理 DHFSPMB 方面优于对比算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Research on the generation and evaluation of bridge defect datasets for underwater environments utilizing CycleGAN networks Hybrid genetic algorithm with Wiener process for multi-scale colored balanced traveling salesman problem CE-DCVSI: Multimodal relational extraction based on collaborative enhancement of dual-channel visual semantic information Learning face super-resolution through identity features and distilling facial prior knowledge Identification of gene regulatory networks associated with breast cancer patient survival using an interpretable deep neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1