The surface cracks on the underwater structures critically damages the overall reliability of the structures and reduces their strength. It is significant to monitor these cracks in timely manner. Recently, deep learning algorithms have been used for large scale data study and predictions. However, deep supervised learning algorithms need to get training on large scale data set which is time consuming and difficult to apply on the underwater structures. Therefore, it is highly needed to address these issues. Current research proposes an improved cycle-constraint generative adversarial algorithm for the timely detection of surface cracks in underwater structures. It utilizes an enhanced cycle-consistent generative adversarial network (CycleGAN). The proposed algorithm uses image processing techniques including DeblurGAN and Dark channel prior methods to get quality of dataset from underwater structures. The proposed Algorithm introduces a novel cross-domain VGG-cosine similarity assessment to precisely evaluate the performance of proposed algorithm to retain crack information etc. Moreover, performance of proposed algorithm is evaluated through both qualitative and quantitative methods. The quantitative results are directly obtained from the visual results are presented which are generated by the proposed Algorithm. Whereas, the performance of proposed algorithm based on quantitative results is obtained from metrics including PSNR, SSIM, and FID. Experimental results indicates that the proposed algorithm outperforms the original CycleGAN. End results indicate that the proposed algorithm decreased the value of FID by 20 % and increased the values of PSNR and SSIM by 2.37 % and 3.33 % respectively. Quantitative and qualitative results of the proposed algorithm give significant advantages during creating of surface crack images.