Magnetic exchange coupled composite behavior in the doped manganite nanoparticles: A proposed phenomenological model

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-09-12 DOI:10.1016/j.physb.2024.416476
{"title":"Magnetic exchange coupled composite behavior in the doped manganite nanoparticles: A proposed phenomenological model","authors":"","doi":"10.1016/j.physb.2024.416476","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we comprehensively investigate the isothermal magnetization behavior of doped perovskite manganite nanoparticles. The focus is on understanding the impact of variation of particle sizes on the soft and hard magnetic phases with respect to the changes in the coercive field and remanent magnetization, both theoretically and experimentally. The study seeks to correlate experimental findings with the proposed phenomenological model to gain deeper insights into the underlying mechanisms governing exchange coupling and anisotropy effects in the nanocrystalline composites. The proposed phenomenological model beautifully demonstrates how the values of saturation magnetization and coercive field changes with changing the particle size in the nanocrystalline La<sub>0.48</sub>Ca<sub>0.52</sub>MnO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (LCMO48) and La<sub>0.46</sub>Ca<sub>0.54</sub>MnO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (LCMO46) compounds. In addition, the model provide an insights into the limitations of critical radius, size and shape of the nanocrystalline particle. This investigation looks into how the size of particles affects their magnetic properties, specifically coercive field and remanent magnetization.</p></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624008172","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we comprehensively investigate the isothermal magnetization behavior of doped perovskite manganite nanoparticles. The focus is on understanding the impact of variation of particle sizes on the soft and hard magnetic phases with respect to the changes in the coercive field and remanent magnetization, both theoretically and experimentally. The study seeks to correlate experimental findings with the proposed phenomenological model to gain deeper insights into the underlying mechanisms governing exchange coupling and anisotropy effects in the nanocrystalline composites. The proposed phenomenological model beautifully demonstrates how the values of saturation magnetization and coercive field changes with changing the particle size in the nanocrystalline La0.48Ca0.52MnO3 (LCMO48) and La0.46Ca0.54MnO3 (LCMO46) compounds. In addition, the model provide an insights into the limitations of critical radius, size and shape of the nanocrystalline particle. This investigation looks into how the size of particles affects their magnetic properties, specifically coercive field and remanent magnetization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂锰矿纳米粒子中的磁交换耦合复合行为:一个拟议的现象学模型
本文全面研究了掺杂包晶锰酸盐纳米粒子的等温磁化行为。重点是从理论和实验两方面了解粒度变化对软磁相和硬磁相的影响,以及矫顽磁场和剩磁的变化。研究试图将实验结果与所提出的现象学模型联系起来,以深入了解纳米晶复合材料中交换耦合和各向异性效应的基本机制。提出的现象学模型很好地展示了纳米晶 La0.48Ca0.52MnO3 (LCMO48) 和 La0.46Ca0.54MnO3 (LCMO46) 复合物中的饱和磁化值和矫顽力场值是如何随粒度变化而变化的。此外,该模型还提供了对纳米晶体颗粒临界半径、尺寸和形状限制的见解。这项研究探讨了颗粒大小如何影响其磁性能,特别是矫顽力场和剩磁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Magnetic structure and colossal dielectric properties in Ga3+ substituted Zn2Y hexaferrites by chemical co-precipitation method Investigation of magneto-optoelectronics properties of Mg1-xMnxS alloys for optoelectronics and spintronic applications Persistence luminescence and thermoluminescence of 260 nm UVC irradiated mixed-phase (BaAl2O4 - BaAl12O19) barium aluminate Synthesis, characterization, electrochemical impedance spectroscopy performance and photodegradation of methylene blue: Mesoporous PEG/TiO2 by sol-gel electrospinning Gradient distribution of cations in rhabdophane La0.27Y0.73PO4·nH2O nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1