First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-09-11 DOI:10.1016/j.micrna.2024.207988
{"title":"First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials","authors":"","doi":"10.1016/j.micrna.2024.207988","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a first-principles method based on density functional theory was systematically employed to investigate the stability, electronic properties, lithium-ion migration rates, and capacity-voltage curves of the LiFe<sub>x-1</sub>M<sub>x</sub>P<sub>y</sub>N<sub>y-1</sub>O<sub>4</sub> (M = Co/Mn, N<img>S/Si) system. The results indicate that the lattice constants of the LiFe<sub>x-1</sub>M<sub>x</sub>P<sub>y</sub>N<sub>y-1</sub>O<sub>4</sub> (M = Co/Mn, N<img>S/Si) system show little variation, and the system exhibits low formation and binding energies. Among the investigated systems, LFP-Mn/S demonstrates the best structural and thermodynamic stability. The bandgap of the doped systems decreases, leading to enhanced electronic conductivity. The LiFe<sub>0.875</sub>Co<sub>0.125</sub>P<sub>0.875</sub>Si<sub>0.125</sub>O<sub>4</sub> and LiFe<sub>0.875</sub>Mn<sub>0.125</sub>P<sub>0.875</sub>Si<sub>0.125</sub>O<sub>4</sub> systems remain semiconductors, while the LiFe<sub>0.875</sub>Co<sub>0.125</sub>P<sub>0.875</sub>S<sub>0.125</sub>O<sub>4</sub> and LiFe<sub>0.875</sub>Mn<sub>0.125</sub>P<sub>0.875</sub>S<sub>0.125</sub>O<sub>4</sub> systems exhibit semi-metallic properties due to the introduction of sulfur. Differential charge density calculations reveal changes in the covalent bond strength of the doped systems, with the introduction of Si and S respectively increasing and decreasing the covalency of their bonds with surrounding oxygen atoms. Additionally, doping reduces the Li-ion diffusion energy barriers, with the LiFe<sub>0.875</sub>Co<sub>0.125</sub>P<sub>0.875</sub>Si<sub>0.125</sub>O<sub>4</sub> system exhibiting the lowest migration energy barrier. The Li-ion diffusion rate is four orders of magnitude faster than that of the intrinsic system. This is attributed to changes in the average lengths of Li–O, Co–O, and Fe–O bonds. Finally, doping also alters the de-lithiation voltage, with values ranging from 2.69 V to 3.65 V for the doped systems, and the LiFe<sub>0.875</sub>Co<sub>0.125</sub>P<sub>0.875</sub>Si<sub>0.125</sub>O<sub>4</sub> system shows the highest complete de-lithiation voltage of 3.65 V. The overall performance improvements of the doped system have significant implications for enhancing the performance of Li-ion batteries.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a first-principles method based on density functional theory was systematically employed to investigate the stability, electronic properties, lithium-ion migration rates, and capacity-voltage curves of the LiFex-1MxPyNy-1O4 (M = Co/Mn, NS/Si) system. The results indicate that the lattice constants of the LiFex-1MxPyNy-1O4 (M = Co/Mn, NS/Si) system show little variation, and the system exhibits low formation and binding energies. Among the investigated systems, LFP-Mn/S demonstrates the best structural and thermodynamic stability. The bandgap of the doped systems decreases, leading to enhanced electronic conductivity. The LiFe0.875Co0.125P0.875Si0.125O4 and LiFe0.875Mn0.125P0.875Si0.125O4 systems remain semiconductors, while the LiFe0.875Co0.125P0.875S0.125O4 and LiFe0.875Mn0.125P0.875S0.125O4 systems exhibit semi-metallic properties due to the introduction of sulfur. Differential charge density calculations reveal changes in the covalent bond strength of the doped systems, with the introduction of Si and S respectively increasing and decreasing the covalency of their bonds with surrounding oxygen atoms. Additionally, doping reduces the Li-ion diffusion energy barriers, with the LiFe0.875Co0.125P0.875Si0.125O4 system exhibiting the lowest migration energy barrier. The Li-ion diffusion rate is four orders of magnitude faster than that of the intrinsic system. This is attributed to changes in the average lengths of Li–O, Co–O, and Fe–O bonds. Finally, doping also alters the de-lithiation voltage, with values ranging from 2.69 V to 3.65 V for the doped systems, and the LiFe0.875Co0.125P0.875Si0.125O4 system shows the highest complete de-lithiation voltage of 3.65 V. The overall performance improvements of the doped system have significant implications for enhancing the performance of Li-ion batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共掺杂 LIFex-1MxPyNy-1O4(M=Co/Mn,NS/Si)锂离子电池正极材料的电子结构和锂离子扩散特性的第一性原理研究
本文采用基于密度泛函理论的第一性原理方法,系统研究了 LiFex-1MxPyNy-1O4 (M = Co/Mn,NS/Si) 体系的稳定性、电子特性、锂离子迁移率和容量-电压曲线。结果表明,LiFex-1MxPyNy-1O4(M = Co/Mn,NS/Si)体系的晶格常数变化很小,而且该体系的形成能和结合能较低。在所研究的体系中,LFP-Mn/S 的结构和热力学稳定性最好。掺杂体系的带隙减小,导致电子导电性增强。LiFe0.875Co0.125P0.875Si0.125O4 和 LiFe0.875Mn0.125P0.875Si0.125O4 系统仍然是半导体,而 LiFe0.875Co0.125P0.875S0.125O4 和 LiFe0.875Mn0.125P0.875S0.125O4 系统由于引入了硫而表现出半金属特性。差分电荷密度计算显示,掺杂体系的共价键强度发生了变化,硅和硫的引入分别增加和减少了它们与周围氧原子的共价键。此外,掺杂还降低了锂离子扩散能垒,其中 LiFe0.875Co0.125P0.875Si0.125O4 系统的迁移能垒最低。锂离子扩散速率比本征体系快四个数量级。这归因于 Li-O、Co-O 和 Fe-O 键平均长度的变化。最后,掺杂还改变了去硫化电压,掺杂体系的去硫化电压从 2.69 V 到 3.65 V 不等,其中 LiFe0.875Co0.125P0.875Si0.125O4 体系的完全去硫化电压最高,达到 3.65 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1