{"title":"Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source","authors":"Min Xiao , Jie Zhao , Qiurong He","doi":"10.1016/j.nonrwa.2024.104214","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a bounded smooth domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≤</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, where the parameter <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is supposed to satisfy the behind property <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>Assume that either <span><math><mrow><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>></mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>≥</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameter <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then the system admits a global classical solution <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> by subtle energy estimates. Moreover, when <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, it is asserted that the corresponding solution exponentially converges to the constant stationary solution <span><math><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>)</mo></mrow></math></span> provided the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is sufficiently small, where <span><math><mrow><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>. Finally, when <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, it can be proved that the corresponding solution of the system decays to <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> exponentially for suitable large <span><math><mi>μ</mi></math></span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104214"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001536","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: in a bounded smooth domain , where the parameter , is supposed to satisfy the behind property Assume that either or , where the parameter , then the system admits a global classical solution by subtle energy estimates. Moreover, when , it is asserted that the corresponding solution exponentially converges to the constant stationary solution provided the initial data is sufficiently small, where . Finally, when , it can be proved that the corresponding solution of the system decays to exponentially for suitable large .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.