Babar Ali , Muhammed Golec , Sukhpal Singh Gill , Huaming Wu , Felix Cuadrado , Steve Uhlig
{"title":"EdgeBus: Co-Simulation based resource management for heterogeneous mobile edge computing environments","authors":"Babar Ali , Muhammed Golec , Sukhpal Singh Gill , Huaming Wu , Felix Cuadrado , Steve Uhlig","doi":"10.1016/j.iot.2024.101368","DOIUrl":null,"url":null,"abstract":"<div><p>Kubernetes has revolutionized traditional monolithic Internet of Things (IoT) applications into lightweight, decentralized, and independent microservices, thus becoming the de facto standard in the realm of container orchestration. Intelligent and efficient container placement in Mobile Edge Computing (MEC) is challenging subjected to user mobility, and surplus but heterogeneous computing resources. One solution to constantly altering user location is to relocate containers closer to the user; however, this leads to additional underutilized active nodes and increases migration’s computational overhead. On the contrary, few to no migrations are attributed to higher latency, thus degrading the Quality of Service (QoS). To tackle these challenges, we created a framework named EdgeBus<span><span><sup>1</sup></span></span>, which enables the co-simulation of container resource management in heterogeneous MEC environments based on Kubernetes. It enables the assessment of the impact of container migrations on resource management, energy, and latency. Further, we propose a mobility and migration cost-aware (MANGO) lightweight scheduler for efficient container management by incorporating migration cost, CPU cores, and memory usage for container scheduling. For user mobility, the Cabspotting dataset is employed, which contains real-world traces of taxi mobility in San Francisco. In the EdgeBus framework, we have created a simulated environment aided with a real-world testbed using Google Kubernetes Engine (GKE) to measure the performance of the MANGO scheduler in comparison to baseline schedulers such as IMPALA-based MobileKube, Latency Greedy, and Binpacking. Finally, extensive experiments have been conducted, which demonstrate the effectiveness of the MANGO in terms of latency and number of migrations.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101368"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003093","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Kubernetes has revolutionized traditional monolithic Internet of Things (IoT) applications into lightweight, decentralized, and independent microservices, thus becoming the de facto standard in the realm of container orchestration. Intelligent and efficient container placement in Mobile Edge Computing (MEC) is challenging subjected to user mobility, and surplus but heterogeneous computing resources. One solution to constantly altering user location is to relocate containers closer to the user; however, this leads to additional underutilized active nodes and increases migration’s computational overhead. On the contrary, few to no migrations are attributed to higher latency, thus degrading the Quality of Service (QoS). To tackle these challenges, we created a framework named EdgeBus1, which enables the co-simulation of container resource management in heterogeneous MEC environments based on Kubernetes. It enables the assessment of the impact of container migrations on resource management, energy, and latency. Further, we propose a mobility and migration cost-aware (MANGO) lightweight scheduler for efficient container management by incorporating migration cost, CPU cores, and memory usage for container scheduling. For user mobility, the Cabspotting dataset is employed, which contains real-world traces of taxi mobility in San Francisco. In the EdgeBus framework, we have created a simulated environment aided with a real-world testbed using Google Kubernetes Engine (GKE) to measure the performance of the MANGO scheduler in comparison to baseline schedulers such as IMPALA-based MobileKube, Latency Greedy, and Binpacking. Finally, extensive experiments have been conducted, which demonstrate the effectiveness of the MANGO in terms of latency and number of migrations.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.