Harshvardhan Uppaluru, Zoe Templin, Mohammed Rafeeq Khan, Md Omar Faruque, Feng Zhao, Jinhui Wang
{"title":"256-level honey memristor-based in-memory neuromorphic system","authors":"Harshvardhan Uppaluru, Zoe Templin, Mohammed Rafeeq Khan, Md Omar Faruque, Feng Zhao, Jinhui Wang","doi":"10.1049/ell2.70029","DOIUrl":null,"url":null,"abstract":"<p>Promising synaptic behaviour has been exhibited by memristors based on natural organic materials. Such memristor-based neuromorphic systems offer notable benefits, including environmental sustainability, low production and disposal costs, non-volatile storage capability, and bio/Complementary Metal-Oxide-Semiconductor (CMOS) compatibility. Here, a 256-level honey memristor-based neuromorphic system is experimentally evaluated for image recognition. In detail, first, 256-level honey memristors are manufactured and tested based on in-house technology; next, the non-linear characteristics and inherent variation of honey memristor devices, which lead to imprecise weight updates and limit the inference accuracy, are investigated. Experimental results indicate that the inference accuracy of the 256-level honey memristor-based neuromorphic system is greater than 88% without cycle-to-cycle variations and 87% with cycle-to-cycle variations for different optimization algorithms. The overall performance of optimization algorithms with and without variation is compared in terms of energy and latency, where the momentum algorithm consistently outperforms the rest of the algorithms. This 256-level honey memristor is a promising alternative enabling sustainable neuromorphic systems, encouraging further research into natural organic materials for neuromorphic computing.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"60 17","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Promising synaptic behaviour has been exhibited by memristors based on natural organic materials. Such memristor-based neuromorphic systems offer notable benefits, including environmental sustainability, low production and disposal costs, non-volatile storage capability, and bio/Complementary Metal-Oxide-Semiconductor (CMOS) compatibility. Here, a 256-level honey memristor-based neuromorphic system is experimentally evaluated for image recognition. In detail, first, 256-level honey memristors are manufactured and tested based on in-house technology; next, the non-linear characteristics and inherent variation of honey memristor devices, which lead to imprecise weight updates and limit the inference accuracy, are investigated. Experimental results indicate that the inference accuracy of the 256-level honey memristor-based neuromorphic system is greater than 88% without cycle-to-cycle variations and 87% with cycle-to-cycle variations for different optimization algorithms. The overall performance of optimization algorithms with and without variation is compared in terms of energy and latency, where the momentum algorithm consistently outperforms the rest of the algorithms. This 256-level honey memristor is a promising alternative enabling sustainable neuromorphic systems, encouraging further research into natural organic materials for neuromorphic computing.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO