Zinc finger protein LjRSDL regulates arbuscule degeneration of arbuscular mycorrhizal fungi in Lotus japonicus

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-09-13 DOI:10.1093/plphys/kiae487
Yunjian Xu, Fang Liu, Fulang Wu, Ruifan Zou, Manli Zhao, Jianping Wu, Beijiu Cheng, Xiaoyu Li
{"title":"Zinc finger protein LjRSDL regulates arbuscule degeneration of arbuscular mycorrhizal fungi in Lotus japonicus","authors":"Yunjian Xu, Fang Liu, Fulang Wu, Ruifan Zou, Manli Zhao, Jianping Wu, Beijiu Cheng, Xiaoyu Li","doi":"10.1093/plphys/kiae487","DOIUrl":null,"url":null,"abstract":"In arbuscular mycorrhizal (AM) symbiosis, appropriate regulation of the formation, maintenance, and degeneration of the arbuscule are essential for plants and fungi. In this study, we identified a Cysteine-2/Histidine-2 zinc finger protein (C2H2-ZFP)-encoding gene in Lotus japonicus named Regulator of Symbiosome Differentiation-Like (LjRSDL) that is required for arbuscule degeneration. Evolutionary analysis showed that homologs of LjRSDL exist in mycorrhizal flowering plants. We obtained ProLjRSDL::GUS transgenic hairy roots and showed that LjRSDL was strongly upregulated upon AM colonization, particularly at 18 days post AM fungi inoculation and specifically expressed in arbuscular-containing cells. The mycorrhization rate increased in the ljrsdl mutant but decreased in LjRSDL overexpressed L. japonicus. Interestingly, we observed higher proportions of large arbuscule in the ljrsdl mutant but lower proportions of larger arbuscule in LjRSDL overexpressing plants. Transcriptome analyses indicated that genes involved in arbuscule degeneration were significantly changed upon the dysregulation of LjRSDL and that LjRSDL-dependent regulation in AM symbiosis is mainly via the hormone signal transduction pathway. LjRSDL, therefore, represents a C2H2-ZFP that negatively regulates AM symbiosis. Our study provides insight into understanding plant-AM fungal communication and AM symbiosis development.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae487","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In arbuscular mycorrhizal (AM) symbiosis, appropriate regulation of the formation, maintenance, and degeneration of the arbuscule are essential for plants and fungi. In this study, we identified a Cysteine-2/Histidine-2 zinc finger protein (C2H2-ZFP)-encoding gene in Lotus japonicus named Regulator of Symbiosome Differentiation-Like (LjRSDL) that is required for arbuscule degeneration. Evolutionary analysis showed that homologs of LjRSDL exist in mycorrhizal flowering plants. We obtained ProLjRSDL::GUS transgenic hairy roots and showed that LjRSDL was strongly upregulated upon AM colonization, particularly at 18 days post AM fungi inoculation and specifically expressed in arbuscular-containing cells. The mycorrhization rate increased in the ljrsdl mutant but decreased in LjRSDL overexpressed L. japonicus. Interestingly, we observed higher proportions of large arbuscule in the ljrsdl mutant but lower proportions of larger arbuscule in LjRSDL overexpressing plants. Transcriptome analyses indicated that genes involved in arbuscule degeneration were significantly changed upon the dysregulation of LjRSDL and that LjRSDL-dependent regulation in AM symbiosis is mainly via the hormone signal transduction pathway. LjRSDL, therefore, represents a C2H2-ZFP that negatively regulates AM symbiosis. Our study provides insight into understanding plant-AM fungal communication and AM symbiosis development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌指蛋白 LjRSDL 可调控日本莲的丛枝菌根真菌的丛枝退化
在丛枝菌根(AM)共生中,适当调节丛枝的形成、维持和退化对植物和真菌都至关重要。在这项研究中,我们在日本莲(Lotus japonicus)中发现了一个半胱氨酸-2/组氨酸-2锌指蛋白(C2H2-ZFP)编码基因,名为共生体分化调节器(Regulator of Symbiosome Differentiation-Like,LjRSDL),它是假根退化所必需的。进化分析表明,LjRSDL 的同源基因存在于菌根有花植物中。我们获得了ProLjRSDL::GUS转基因毛根,结果表明LjRSDL在AM定殖后强烈上调,尤其是在AM真菌接种后18天,并在含假根细胞中特异表达。ljrsdl突变体的菌根化率增加了,但过表达LjRSDL的日本鹅膏蕈的菌根化率却降低了。有趣的是,我们在ljrsdl突变体中观察到大型假根的比例较高,但在LjRSDL过表达植株中大型假根的比例较低。转录组分析表明,LjRSDL调控失调后,参与假根退化的基因发生了显著变化,在AM共生中,LjRSDL依赖性调控主要通过激素信号转导途径进行。因此,LjRSDL代表了一种负向调控AM共生的C2H2-ZFP。我们的研究为了解植物与AM真菌的交流和AM共生的发展提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Developmental responses of roots to limited phosphate availability: research progress and application in cereals Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato The transcriptional integration of environmental cues with root cell type development Regulatory Network of the Late-Recruited Primary Decarboxylase C4NADP-ME in Sugarcane Histone deacetylase GhHDA5 negatively regulates Verticillium wilt resistance in cotton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1