{"title":"Self-regulating heating and self-powered flexible fiber fabrics at low temperature","authors":"Xuewen Zheng, Xingyi Dai, Jing Ge, Xiaoyu Yang, Ping Yang, Yiyu Feng, Long-Biao Huang, Wei Feng","doi":"10.1016/j.jmst.2024.08.047","DOIUrl":null,"url":null,"abstract":"<p>Self-regulating heating and self-powered flexibility are pivotal for future wearable devices. However, the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and other environments. This study introduces an azopolymer with remarkable semicrystallinity and reversible photoinduced solid-liquid transition ability that is obtained through copolymerization of azobenzene (Azo) monomers and styrene. A composite of one such copolymer with an Azo: styrene molar ratio of 9:1 (copolymer is denoted as PAzo<sub>9:1</sub>-<em>co</em>-polystyrene (PS)) and nylon fabrics (NFs) is prepared (composite is denoted as PAzo<sub>9:1</sub>-<em>co</em>-PS@NF). PAzo<sub>9:1</sub>-<em>co</em>-PS@NF exhibits hydrophobicity and high wear resistance. Moreover, it shows good responsiveness (0.624 s<sup>−1</sup>) during isomerization under solid ultraviolet (UV) light (365 nm) with an energy density of 70.6 kJ kg<sup>−1</sup>. In addition, the open-circuit voltage, short-circuit current and quantity values of PAzo<sub>9:1</sub>-<em>co-</em>PS@NF exhibit small variations in a temperature range of -20 °C to 25 °C and remain at 170 V, 5 μA, and 62 nC, respectively. Notably, the involved NFs were cut and sewn into gloves to be worn on a human hand model. When the model was exposed to both UV radiation and friction, the temperature of the finger coated with PAzo<sub>9:1</sub>-<em>co</em>-PS was approximately 6.0°C higher than that of the other parts. Therefore, developing triboelectric nanogenerators based on the <em>in situ</em> photothermal cycles of Azo in wearable devices is important to develop low-temperature self-regulating heating and self-powered flexible devices for extreme environments.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.047","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-regulating heating and self-powered flexibility are pivotal for future wearable devices. However, the low energy-conversion rate of wearable devices at low temperatures limits their application in plateaus and other environments. This study introduces an azopolymer with remarkable semicrystallinity and reversible photoinduced solid-liquid transition ability that is obtained through copolymerization of azobenzene (Azo) monomers and styrene. A composite of one such copolymer with an Azo: styrene molar ratio of 9:1 (copolymer is denoted as PAzo9:1-co-polystyrene (PS)) and nylon fabrics (NFs) is prepared (composite is denoted as PAzo9:1-co-PS@NF). PAzo9:1-co-PS@NF exhibits hydrophobicity and high wear resistance. Moreover, it shows good responsiveness (0.624 s−1) during isomerization under solid ultraviolet (UV) light (365 nm) with an energy density of 70.6 kJ kg−1. In addition, the open-circuit voltage, short-circuit current and quantity values of PAzo9:1-co-PS@NF exhibit small variations in a temperature range of -20 °C to 25 °C and remain at 170 V, 5 μA, and 62 nC, respectively. Notably, the involved NFs were cut and sewn into gloves to be worn on a human hand model. When the model was exposed to both UV radiation and friction, the temperature of the finger coated with PAzo9:1-co-PS was approximately 6.0°C higher than that of the other parts. Therefore, developing triboelectric nanogenerators based on the in situ photothermal cycles of Azo in wearable devices is important to develop low-temperature self-regulating heating and self-powered flexible devices for extreme environments.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.