MXene Triggered Free Radical Polymerization in Minutes toward All-Printed Zn-Ion Hybrid Capacitors and Beyond

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-14 DOI:10.1002/anie.202413728
Chuanfang Zhang, Wentao Zhang, Chuijin Zeng, Mengtian Zhang, Chendong Zhao, Dongliang Chao, Guangmin Zhou
{"title":"MXene Triggered Free Radical Polymerization in Minutes toward All-Printed Zn-Ion Hybrid Capacitors and Beyond","authors":"Chuanfang Zhang, Wentao Zhang, Chuijin Zeng, Mengtian Zhang, Chendong Zhao, Dongliang Chao, Guangmin Zhou","doi":"10.1002/anie.202413728","DOIUrl":null,"url":null,"abstract":"Additive manufacturing of (quasi-) solid-state (QSS) electrochemical energy storage devices (EES) highlights the significance of gel polymer electrolytes (GPEs) design. Creating well-bonded electrode-GPEs interfaces in the electrode percolative network via printing leads to large-scale production of customized EES with boosted electrochemical performance but has proven to be quite challenging. Herein, we report on a versatile, universal and scalable approach to engineer a controllable, seamless electrode-GPEs interface via free radical polymerization (FRP) triggered by MXene at room temperature. Importantly, MXene reduces the dissociation enthalpy of persulfate initiators and significantly shortens the induction period accelerated by SO− 4·, enabling the completion of FRP within minutes. The as-formed well-bonded electrode-GPEs interface homogenizes the electrical and concentration fields (i.e., Zn2+), therefore suppressing the dendrites formation, which translates to long-term cycling (50,000 times), high energy density (105.5 Wh kg−1) and power density (9231 W kg−1) coupled with excellent stability upon deformation in the zinc-ion hybrid capacitors (ZHCs). Moreover, the critical switch of the rheological behaviours of the polymer electrolyte (as aqueous inks in still state and become solids once triggered by MXene) perfectly ensures the direct all-printing of electrodes and GPEs with well-bonded interface in between, opening vast possibilities for all-printed QSS EES beyond ZHCs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202413728","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing of (quasi-) solid-state (QSS) electrochemical energy storage devices (EES) highlights the significance of gel polymer electrolytes (GPEs) design. Creating well-bonded electrode-GPEs interfaces in the electrode percolative network via printing leads to large-scale production of customized EES with boosted electrochemical performance but has proven to be quite challenging. Herein, we report on a versatile, universal and scalable approach to engineer a controllable, seamless electrode-GPEs interface via free radical polymerization (FRP) triggered by MXene at room temperature. Importantly, MXene reduces the dissociation enthalpy of persulfate initiators and significantly shortens the induction period accelerated by SO− 4·, enabling the completion of FRP within minutes. The as-formed well-bonded electrode-GPEs interface homogenizes the electrical and concentration fields (i.e., Zn2+), therefore suppressing the dendrites formation, which translates to long-term cycling (50,000 times), high energy density (105.5 Wh kg−1) and power density (9231 W kg−1) coupled with excellent stability upon deformation in the zinc-ion hybrid capacitors (ZHCs). Moreover, the critical switch of the rheological behaviours of the polymer electrolyte (as aqueous inks in still state and become solids once triggered by MXene) perfectly ensures the direct all-printing of electrodes and GPEs with well-bonded interface in between, opening vast possibilities for all-printed QSS EES beyond ZHCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在几分钟内实现由 MXene 触发的自由基聚合,从而实现全印刷锌-离子混合电容器及其他产品的目标
准)固态(QSS)电化学储能装置(EES)的增材制造凸显了凝胶聚合物电解质(GPEs)设计的重要性。通过打印在电极渗流网络中创建结合良好的电极-凝胶聚合物电解质界面,可大规模生产具有更佳电化学性能的定制 EES,但事实证明这相当具有挑战性。在此,我们报告了一种多功能、通用且可扩展的方法,即通过 MXene 在室温下触发自由基聚合 (FRP) 来设计可控的无缝电极-GPEs 接口。重要的是,MXene 降低了过硫酸盐引发剂的解离焓,大大缩短了 SO- 4- 加快的诱导期,使自由基聚合在几分钟内完成。形成的结合良好的电极-GPEs 界面均匀了电场和浓度场(即 Zn2+),因此抑制了树枝状突起的形成,从而实现了锌离子混合电容器(ZHC)的长期循环(50,000 次)、高能量密度(105.5 Wh kg-1)和功率密度(9231 W kg-1),以及变形时的出色稳定性。此外,聚合物电解质流变行为的临界转换(静止状态下为水性墨水,一旦被 MXene 激发则变为固体)完美地确保了电极和 GPE 之间具有良好结合界面的直接全印刷,为 ZHC 之外的全印刷 QSS EES 开辟了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Confinement effects and manipulation strategies of nanocomposite membranes towards molecular separation. Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors. Location-Specific Microenvironment Modulation Around Single-Atom Metal Sites in Metal-Organic Frameworks for Boosting Catalysis. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids Bioinspired synthesis of cucurbalsaminones B and C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1