0D–2D multifunctional bimetallic MOF derivative-MXene heterojunction for high areal capacity lithium-sulfur batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-07 DOI:10.1016/j.jcis.2024.09.026
{"title":"0D–2D multifunctional bimetallic MOF derivative-MXene heterojunction for high areal capacity lithium-sulfur batteries","authors":"","doi":"10.1016/j.jcis.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-sulfur (Li-S) batteries have attracted much attention due to their high specific capacity. However, at high loads and rates, the polysulfides conversion rate and ion transport of batteries are slow, limiting their commercialization. This work reports zero-dimensional (0D) bimetallic MOF derivatives grown in situ on two-dimensional (2D) MXene by electrostatic adsorption (FeCo@Ti<sub>3</sub>C<sub>2</sub>). The 0D bimetallic structure effectively avoids the stacking of MXene while providing a dual catalytic site for polysulfides. The 2D structure of MXene also provides a large number of pathways for the rapid diffusion of lithium ions. This 0D–2D heterostructured heterogeneous catalyst with bimetallic synergistic active sites efficiently immobilizes and catalyzes polysulfides, providing a fast charge transfer pathway for the electrochemical reaction of lithium polysulfides. The Li-S battery with this multifunctional 0D–2D heterojunction structure catalyst has outstanding high rate capacity (703 mAh g<sup>−1</sup> at 4 C at room temperature and 555 mAh g<sup>−1</sup> at 2 C at 0 °C), fascinating capacity at high load (5.5 mAh cm<sup>−2</sup> after 100 cycles at a high sulfur content of 8.2 mg cm<sup>−2</sup>). The study provides new ideas for the commercialization of high-efficiency Li-S batteries.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724020848","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-sulfur (Li-S) batteries have attracted much attention due to their high specific capacity. However, at high loads and rates, the polysulfides conversion rate and ion transport of batteries are slow, limiting their commercialization. This work reports zero-dimensional (0D) bimetallic MOF derivatives grown in situ on two-dimensional (2D) MXene by electrostatic adsorption (FeCo@Ti3C2). The 0D bimetallic structure effectively avoids the stacking of MXene while providing a dual catalytic site for polysulfides. The 2D structure of MXene also provides a large number of pathways for the rapid diffusion of lithium ions. This 0D–2D heterostructured heterogeneous catalyst with bimetallic synergistic active sites efficiently immobilizes and catalyzes polysulfides, providing a fast charge transfer pathway for the electrochemical reaction of lithium polysulfides. The Li-S battery with this multifunctional 0D–2D heterojunction structure catalyst has outstanding high rate capacity (703 mAh g−1 at 4 C at room temperature and 555 mAh g−1 at 2 C at 0 °C), fascinating capacity at high load (5.5 mAh cm−2 after 100 cycles at a high sulfur content of 8.2 mg cm−2). The study provides new ideas for the commercialization of high-efficiency Li-S batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
0D-2D 多功能双金属 MOF 衍生物-MXene 异质结用于高等容量锂硫电池
锂硫(Li-S)电池因其高比容量而备受关注。然而,在高负载和高倍率情况下,电池的多硫化物转化率和离子传输速度较慢,限制了其商业化。本研究报告了通过静电吸附在二维(2D)MXene 上原位生长的零维(0D)双金属 MOF 衍生物(FeCo@Ti3C2)。0D 双金属结构有效地避免了 MXene 的堆叠,同时为多硫化物提供了双重催化位点。MXene 的二维结构还为锂离子的快速扩散提供了大量途径。这种 0D-2D 异质结构的异质催化剂具有双金属协同活性位点,可有效固定和催化多硫化物,为多硫化锂的电化学反应提供快速电荷转移途径。采用这种多功能 0D-2D 异质结结构催化剂的锂-S 电池具有出色的高倍率容量(室温下 4 C 时为 703 mAh g-1,0 °C 下 2 C 时为 555 mAh g-1)和高负载时的迷人容量(在 8.2 mg cm-2 的高硫含量条件下循环 100 次后为 5.5 mAh cm-2)。这项研究为高效锂-S 电池的商业化提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1