Roghayeh Hossein Hashemi , Ali Nikbakht , Hamed Aalipour
{"title":"Synergistic effects of oxygen nanobubble, nano-silicon and seaweed extract on promoting quality and postharvest performance of two cut rose flowers","authors":"Roghayeh Hossein Hashemi , Ali Nikbakht , Hamed Aalipour","doi":"10.1016/j.scienta.2024.113637","DOIUrl":null,"url":null,"abstract":"<div><p>The application of novel and cost-effective methodologies to prolong the vase life and improve the quality of harvested flowers, while reducing post-harvest loss, has become increasingly important. Therefore, the purpose of this study was to investigate the efficacy of seaweed extract (SWE), oxygen nanobubble (NB), and nano-silicon (NSi) in a hydroponic system to improve the pre-harvest and post-harvest qualities of cut rose flowers. The experimental design comprised four variables: two cut rose cultivars, namely Samurai and Jumilia; the utilization of NB at two different concentrations (0 and 20 mg <em>L</em><sup>−1</sup>); the foliar application of NSi at two different concentrations (0 and 2 ml <em>L</em><sup>−1</sup>); and foliar application of SWE at two different concentrations (0 and 1 ml <em>L</em><sup>−1</sup>). The quality and longevity of the flowers post-harvest were significantly enhanced by the treatments that were implemented. Comparing Jumilia cv to the control (31 days), the application of NB increased post-harvest life by 47.6 %. In addition, the petals exhibited the lowest Malondialdehyde concentrations. When NSi was applied to the flower, its quality improved by 43.7 % in comparison to the control. The combined treatment of NSi and SWE or individual application of NB resulted in the Samurai cv flower reaching its maximum length of 111.3 cm and 110.7 cm, respectively. The combined application of NB, NSi, and SWE resulted in a significant increase in some nutrient concentrations (N, P, Ca, and Mg) of two cut rose flowers. The utilization of NB, and NSi treatments increased N by 16.5 % and 11.5 %, respectively, compared to the absence of these treatments. The utilization of SWE resulted in a 3.82 % rise in N and a 46.4 % increase in Zn, as compared to the control plants. Based on our findings, the combined application of NB, NSi, and SWE in hydroponic cultivation for cut flowers may improve the flowers' quality and postharvest life. In protected cultivation, NB are an additional promising treatment.</p></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"338 ","pages":"Article 113637"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824007908","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The application of novel and cost-effective methodologies to prolong the vase life and improve the quality of harvested flowers, while reducing post-harvest loss, has become increasingly important. Therefore, the purpose of this study was to investigate the efficacy of seaweed extract (SWE), oxygen nanobubble (NB), and nano-silicon (NSi) in a hydroponic system to improve the pre-harvest and post-harvest qualities of cut rose flowers. The experimental design comprised four variables: two cut rose cultivars, namely Samurai and Jumilia; the utilization of NB at two different concentrations (0 and 20 mg L−1); the foliar application of NSi at two different concentrations (0 and 2 ml L−1); and foliar application of SWE at two different concentrations (0 and 1 ml L−1). The quality and longevity of the flowers post-harvest were significantly enhanced by the treatments that were implemented. Comparing Jumilia cv to the control (31 days), the application of NB increased post-harvest life by 47.6 %. In addition, the petals exhibited the lowest Malondialdehyde concentrations. When NSi was applied to the flower, its quality improved by 43.7 % in comparison to the control. The combined treatment of NSi and SWE or individual application of NB resulted in the Samurai cv flower reaching its maximum length of 111.3 cm and 110.7 cm, respectively. The combined application of NB, NSi, and SWE resulted in a significant increase in some nutrient concentrations (N, P, Ca, and Mg) of two cut rose flowers. The utilization of NB, and NSi treatments increased N by 16.5 % and 11.5 %, respectively, compared to the absence of these treatments. The utilization of SWE resulted in a 3.82 % rise in N and a 46.4 % increase in Zn, as compared to the control plants. Based on our findings, the combined application of NB, NSi, and SWE in hydroponic cultivation for cut flowers may improve the flowers' quality and postharvest life. In protected cultivation, NB are an additional promising treatment.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.