Study on penetration depth in laser welding: A process information database-based control strategy and OCT measuring verification

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-09-14 DOI:10.1016/j.aei.2024.102825
{"title":"Study on penetration depth in laser welding: A process information database-based control strategy and OCT measuring verification","authors":"","doi":"10.1016/j.aei.2024.102825","DOIUrl":null,"url":null,"abstract":"<div><p>Penetration depth acts as a crucial indicator reflecting laser welding quality, thus the control of its stability and the perception of its fluctuation state are increasingly garnering attention. This paper proposes a process information database-based control strategy for penetration depth, and the control validity is verified through penetration depth detection utilizing optical coherence tomography (OCT). The process information database stores diverse expected penetration depth knowledge formed by a substantial quantity of varying welding speeds with fixed other process parameters under undisturbed welding conditions. In the database, the stable average values inside the standard penetration depth information and the corresponding heat input (HI) values are connected and mapped via an artificial neural network (ANN). In response to abnormal variations in the penetration depth curve caused by interferences during welding, according to the HI gap predicted by the trained ANN from the penetration depth gap arising from the curve deviation, the control unit can calculate the new welding speed required to feed the penetration depth curve back to within the steady fluctuation range. Based on OCT, the keyhole depth signal is acquired, and a deep belief network is built to predict the penetration depth curve via the correlation between the reconstructed keyhole depth obtained by ensemble empirical mode decomposition and the penetration depth. This detection method demonstrates that the penetration depth curve can be controlled accurately. Finally, a closed-loop real-time feedback control system for penetration depth is established.</p></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624004737","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Penetration depth acts as a crucial indicator reflecting laser welding quality, thus the control of its stability and the perception of its fluctuation state are increasingly garnering attention. This paper proposes a process information database-based control strategy for penetration depth, and the control validity is verified through penetration depth detection utilizing optical coherence tomography (OCT). The process information database stores diverse expected penetration depth knowledge formed by a substantial quantity of varying welding speeds with fixed other process parameters under undisturbed welding conditions. In the database, the stable average values inside the standard penetration depth information and the corresponding heat input (HI) values are connected and mapped via an artificial neural network (ANN). In response to abnormal variations in the penetration depth curve caused by interferences during welding, according to the HI gap predicted by the trained ANN from the penetration depth gap arising from the curve deviation, the control unit can calculate the new welding speed required to feed the penetration depth curve back to within the steady fluctuation range. Based on OCT, the keyhole depth signal is acquired, and a deep belief network is built to predict the penetration depth curve via the correlation between the reconstructed keyhole depth obtained by ensemble empirical mode decomposition and the penetration depth. This detection method demonstrates that the penetration depth curve can be controlled accurately. Finally, a closed-loop real-time feedback control system for penetration depth is established.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光焊接熔深研究:基于过程信息数据库的控制策略和 OCT 测量验证
熔深是反映激光焊接质量的重要指标,因此对其稳定性的控制以及对其波动状态的感知越来越受到关注。本文提出了一种基于过程信息数据库的熔深控制策略,并通过利用光学相干断层扫描(OCT)进行熔深检测来验证控制的有效性。工艺信息数据库存储了在无干扰焊接条件下,由大量不同的焊接速度和固定的其他工艺参数所形成的各种预期熔透深度知识。在数据库中,标准熔深信息内的稳定平均值和相应的热输入(HI)值通过人工神经网络(ANN)进行连接和映射。针对焊接过程中干扰引起的穿透深度曲线异常变化,根据训练有素的人工神经网络从曲线偏差引起的穿透深度差距中预测出的 HI 差距,控制单元可计算出将穿透深度曲线送回稳定波动范围内所需的新焊接速度。基于 OCT 获取锁孔深度信号,并建立深度信念网络,通过集合经验模式分解得到的重构锁孔深度与贯入深度之间的相关性预测贯入深度曲线。这种检测方法证明了穿透深度曲线是可以精确控制的。最后,建立了穿透深度闭环实时反馈控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
A method for constructing an ergonomics evaluation indicator system for community aging services based on Kano-Delphi-CFA: A case study in China A temperature-sensitive points selection method for machine tool based on rough set and multi-objective adaptive hybrid evolutionary algorithm Enhancing EEG artifact removal through neural architecture search with large kernels Optimal design of an integrated inspection scheme with two adjustable sampling mechanisms for lot disposition A novel product shape design method integrating Kansei engineering and whale optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1