{"title":"Effects of microplastics concentration on plant root traits and biomass: Experiment and meta-analysis","authors":"","doi":"10.1016/j.ecoenv.2024.117038","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of microplastics (MPs) on plant growth, particularly root development, remains underexplored. To address this, a laboratory pot experiment and meta-analysis were conducted to assess how varying concentrations of MPs affect plant root growth. In pot experiments, the response of root traits to MPs differed by plant species. For <em>F. arundinacea</em>, a higher addition (1 % and 2 %) of polypropylene (PP) significantly increased the total length, surface area, volume, as well as fine root (<1 mm) surface area and volume. Partial least squares path modeling (PLS-PM) analysis showed that high concentrations of MPs affected plant root growth and plant root biomass by promoting fine root growth. Meta-analysis indicated that MPs increased shoot dry biomass by 32.7 % but reduced root dry biomass by 4.1 % and root length by 14.3 %. Higher concentrations (>0.5 %) of MPs significantly increased root length (35.2 %) and root dry biomass (6.3 %), whereas decreased shoot dry biomass (-8.6 %). Under the lower MPs concentration (<0.5 %), the root length and root dry biomass were decreased by 18.6 % and 11.1 %, respectively, and the shoot dry biomass was increased by 53.2 % compared with the treatment without MPs. The results emphasize the differences in performance between species for different MPs concentrations, implying that there may be future scope to select for species/varieties that are most resilient to the presence of MPs.</p></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S014765132401114X/pdfft?md5=3b44453a6ccfdd7b7a93fe0fad5c3bc1&pid=1-s2.0-S014765132401114X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014765132401114X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of microplastics (MPs) on plant growth, particularly root development, remains underexplored. To address this, a laboratory pot experiment and meta-analysis were conducted to assess how varying concentrations of MPs affect plant root growth. In pot experiments, the response of root traits to MPs differed by plant species. For F. arundinacea, a higher addition (1 % and 2 %) of polypropylene (PP) significantly increased the total length, surface area, volume, as well as fine root (<1 mm) surface area and volume. Partial least squares path modeling (PLS-PM) analysis showed that high concentrations of MPs affected plant root growth and plant root biomass by promoting fine root growth. Meta-analysis indicated that MPs increased shoot dry biomass by 32.7 % but reduced root dry biomass by 4.1 % and root length by 14.3 %. Higher concentrations (>0.5 %) of MPs significantly increased root length (35.2 %) and root dry biomass (6.3 %), whereas decreased shoot dry biomass (-8.6 %). Under the lower MPs concentration (<0.5 %), the root length and root dry biomass were decreased by 18.6 % and 11.1 %, respectively, and the shoot dry biomass was increased by 53.2 % compared with the treatment without MPs. The results emphasize the differences in performance between species for different MPs concentrations, implying that there may be future scope to select for species/varieties that are most resilient to the presence of MPs.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.