Yueli Xie , Mengjie Wang , Haoxiang Guo , Baichuan Jin , Chenlu Xu , Xin Dai , Yiyang Fu , Ze Wang , Weizhao Yao , Yuan Liu , Weihong Tan
{"title":"Protein denaturation for in-depth serum proteome profiling and enhanced cancer diagnosis","authors":"Yueli Xie , Mengjie Wang , Haoxiang Guo , Baichuan Jin , Chenlu Xu , Xin Dai , Yiyang Fu , Ze Wang , Weizhao Yao , Yuan Liu , Weihong Tan","doi":"10.1016/j.nantod.2024.102488","DOIUrl":null,"url":null,"abstract":"<div><p>The in-depth blood-based proteomics is significantly limited owing to the intrinsic wide dynamic range of protein concentrations (over 10 orders of magnitude) and highly abundant proteins (albumin, etc.) in blood. Here, we developed a protein denaturation strategy to enhance the serum proteomic depth via nanoparticle-protein corona for enhanced non-small cell lung cancer (NSCLC) diagnosis. We developed an optimal denaturant panel consists of nature, 30 % acetonitrile, 40 % RapiGest, and 4 M urea respectively treated serum to form various nanoparticle-protein coronas with magnetic nanoparticles (MNPs). Based on this panel, we have identified 1846 proteins by profiling 172 NSCLC serum samples, significantly enhancing the depth of serum proteomics. Furthermore, we selected 15 key proteins with random forest algorithm to distinguish the benign and malignant nodules and achieved an ROC-AUC of 98.44 %. Differentially expressed protein-based pathway analysis revealed that metabolic and immune-related pathways were significantly enriched, in which apolipoproteins play pivotal role in the transfer from benign to malignant nodules. Our study demonstrated a facile serum denaturation strategy for enhanced depth of serum proteomics which will benefit the cancer biomarker discovery and diagnosis.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102488"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174801322400344X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The in-depth blood-based proteomics is significantly limited owing to the intrinsic wide dynamic range of protein concentrations (over 10 orders of magnitude) and highly abundant proteins (albumin, etc.) in blood. Here, we developed a protein denaturation strategy to enhance the serum proteomic depth via nanoparticle-protein corona for enhanced non-small cell lung cancer (NSCLC) diagnosis. We developed an optimal denaturant panel consists of nature, 30 % acetonitrile, 40 % RapiGest, and 4 M urea respectively treated serum to form various nanoparticle-protein coronas with magnetic nanoparticles (MNPs). Based on this panel, we have identified 1846 proteins by profiling 172 NSCLC serum samples, significantly enhancing the depth of serum proteomics. Furthermore, we selected 15 key proteins with random forest algorithm to distinguish the benign and malignant nodules and achieved an ROC-AUC of 98.44 %. Differentially expressed protein-based pathway analysis revealed that metabolic and immune-related pathways were significantly enriched, in which apolipoproteins play pivotal role in the transfer from benign to malignant nodules. Our study demonstrated a facile serum denaturation strategy for enhanced depth of serum proteomics which will benefit the cancer biomarker discovery and diagnosis.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.