{"title":"Disaster mechanism of large-diameter shield tunnel segments under multi-source load coupling: A case study","authors":"","doi":"10.1016/j.engfailanal.2024.108878","DOIUrl":null,"url":null,"abstract":"<div><p>The deflection squeezing of the shield shell and the eccentric jack thrust significantly impact the segment dislocation and damage. Based on summarizing the derivative relationship between engineering factors and disasters, this study established a 3D numerical calculation model under the multi-source load coupling. Then, this study explored the displacement and dislocation distribution of segments, as well as their derivative relationship with bolt failure. Furthermore, this study analyzed the spatial distribution and evolution characteristics of segment damage. Further revealing the disaster mechanism and proposing the engineering treatment measures. The research results indicate that as the deflection angle increases, the vertical relative compression deformation of the segment that is detaching from the shield tail (segment-DFST) becomes more significant. The plastic strain of the internal bolts inside the two segments in direct contact with the shield shell is mainly related to the radial and longitudinal dislocation. The increase in the deflection angle will lead to a more significant increase in the adjacent dislocation on both sides and the internal dislocation. The plastic strain of the internal bolts of the segment that is completely in the shield shell (segment-CSS) is more influenced by joint opening and longitudinal dislocation under the lower eccentric compression (LEC) state. The plastic strain of the internal bolts in segment-DFST is more influenced by radial dislocation and joint opening under the LEC state. The tension damage of the segments mainly occurs on both sides of the circumferential joint and the lower part of the segment-CSS. The compression damage of the segments is mainly distributed at the top and bottom of the segment-CSS. The eccentric distribution of jack thrust has the most significant impact on the block damage of the lower part of the segment-CSS. With the increase of the deflection angle, the compression damage and distribution range of the blocks at the bottom of the segment-DFST increase sharply. The compression damage and distribution range of the segment-CSS gradually spread from the upper and lower parts to the middle of the segment. The increase in deflection angle will promote the influence of the thrust in LEC state on the compression damage of the lower block of the segment-CSS, and on the tension damage of the upper block of the segment- DFST.</p></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724009245","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The deflection squeezing of the shield shell and the eccentric jack thrust significantly impact the segment dislocation and damage. Based on summarizing the derivative relationship between engineering factors and disasters, this study established a 3D numerical calculation model under the multi-source load coupling. Then, this study explored the displacement and dislocation distribution of segments, as well as their derivative relationship with bolt failure. Furthermore, this study analyzed the spatial distribution and evolution characteristics of segment damage. Further revealing the disaster mechanism and proposing the engineering treatment measures. The research results indicate that as the deflection angle increases, the vertical relative compression deformation of the segment that is detaching from the shield tail (segment-DFST) becomes more significant. The plastic strain of the internal bolts inside the two segments in direct contact with the shield shell is mainly related to the radial and longitudinal dislocation. The increase in the deflection angle will lead to a more significant increase in the adjacent dislocation on both sides and the internal dislocation. The plastic strain of the internal bolts of the segment that is completely in the shield shell (segment-CSS) is more influenced by joint opening and longitudinal dislocation under the lower eccentric compression (LEC) state. The plastic strain of the internal bolts in segment-DFST is more influenced by radial dislocation and joint opening under the LEC state. The tension damage of the segments mainly occurs on both sides of the circumferential joint and the lower part of the segment-CSS. The compression damage of the segments is mainly distributed at the top and bottom of the segment-CSS. The eccentric distribution of jack thrust has the most significant impact on the block damage of the lower part of the segment-CSS. With the increase of the deflection angle, the compression damage and distribution range of the blocks at the bottom of the segment-DFST increase sharply. The compression damage and distribution range of the segment-CSS gradually spread from the upper and lower parts to the middle of the segment. The increase in deflection angle will promote the influence of the thrust in LEC state on the compression damage of the lower block of the segment-CSS, and on the tension damage of the upper block of the segment- DFST.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.