{"title":"Buckling and failure mechanisms of asymmetric composite sandwich panels subjected to shear loadings","authors":"","doi":"10.1016/j.engfailanal.2024.109039","DOIUrl":null,"url":null,"abstract":"<div><div>Asymmetric sandwich technology serves as an effective option for introducing loads into sandwich structures in lieu of conventional inserts and joints in lightweight design of thin-walled aeronautical applications. In this study, buckling and failure behaviors are investigated on asymmetric sandwich panels with tapered regions subjected to shearing, where the panels are composed of CFRP laminates as skins and PMI foam as the core. Experimental data and observations are analyzed regarding critical loads, strain distributions, macro- and micro-scaled failure mechanisms. Detailed damage evolution is captured with the developed material and structural models. The influence of the core thickness on stability, load-bearing capacity and failure mechanisms is further investigated. Results show that the shear failure is mainly induced by buckling with an extensive matrix splitting fracture along the diagonal direction for sandwich panels with thin cores. Nonlinearity is observed in strain and deflection responses. Fiber pull-out is formed due to losing support of neighboring matrix. The fracture morphology of fiber breakage roughly appears oblique, indicating that the failure is mainly caused by the combination of tension and shearing. For sandwich panels with a thicker core, i.e. 10 mm and 12 mm, the failure mode switches to pure shear failure. Due to the intensification of tapered edges, local bugling occurs simultaneously with ultimate failure. The ultimate load presents a mounting-up and declining trend with the increase of core thickness, other than a monotonic trend. Conclusively, optimal design parameters exist, such as 10 mm core thickness in the studied case, regarding the load-bearing capacity.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724010859","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Asymmetric sandwich technology serves as an effective option for introducing loads into sandwich structures in lieu of conventional inserts and joints in lightweight design of thin-walled aeronautical applications. In this study, buckling and failure behaviors are investigated on asymmetric sandwich panels with tapered regions subjected to shearing, where the panels are composed of CFRP laminates as skins and PMI foam as the core. Experimental data and observations are analyzed regarding critical loads, strain distributions, macro- and micro-scaled failure mechanisms. Detailed damage evolution is captured with the developed material and structural models. The influence of the core thickness on stability, load-bearing capacity and failure mechanisms is further investigated. Results show that the shear failure is mainly induced by buckling with an extensive matrix splitting fracture along the diagonal direction for sandwich panels with thin cores. Nonlinearity is observed in strain and deflection responses. Fiber pull-out is formed due to losing support of neighboring matrix. The fracture morphology of fiber breakage roughly appears oblique, indicating that the failure is mainly caused by the combination of tension and shearing. For sandwich panels with a thicker core, i.e. 10 mm and 12 mm, the failure mode switches to pure shear failure. Due to the intensification of tapered edges, local bugling occurs simultaneously with ultimate failure. The ultimate load presents a mounting-up and declining trend with the increase of core thickness, other than a monotonic trend. Conclusively, optimal design parameters exist, such as 10 mm core thickness in the studied case, regarding the load-bearing capacity.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.