Laser wounding pattern in relation to vascular tissue development for the stimulation of adventitious root formation in rose cuttings

IF 3.9 2区 农林科学 Q1 HORTICULTURE Scientia Horticulturae Pub Date : 2024-09-14 DOI:10.1016/j.scienta.2024.113647
Raul Javier Morales Orellana , Traud Winkelmann , Thomas Rath
{"title":"Laser wounding pattern in relation to vascular tissue development for the stimulation of adventitious root formation in rose cuttings","authors":"Raul Javier Morales Orellana ,&nbsp;Traud Winkelmann ,&nbsp;Thomas Rath","doi":"10.1016/j.scienta.2024.113647","DOIUrl":null,"url":null,"abstract":"<div><p>The stimulation of adventitious root formation from laser-wounded rose cuttings in our previous study suggests that exposing the phloem proximities is one of the most relevant aspects for a positive effect on rooting response. But, the specific dimensions that wound patterns must fulfill to optimize rooting promotion remain unknown. This study analyzed the effect of wounded area and wound perimeter of laser marking patterns on the development of phloem, xylem, and callus using cross sections of single-leaf cuttings of <em>Rosa canina</em> 'Pfänder'. Four distinct laser patterns were designed and marked along the cutting base. Among these, three patterns were based on longitudinal strips, while one pattern was characterized by small squares, resulting in two distinct wound area levels and four wound perimeter levels. Periodic evaluations of stem sections showed that the development of phloem and xylem was significantly influenced by the pattern's geometry. Larger dimensions of xylem were associated with patterns of greater area and a smaller perimeter, while an increase in phloem was related to patterns of longer perimeter distributed in smaller areas. The maximum rooting success in wounded cuttings reached 44% in contrast to 9% observed in the control group in the absence of additional wounds. The development of vascular tissue was significantly correlated with adventitious rooting, with phloem being more closely linked with a Pearson coefficient of 0.92 compared to 0.30 for xylem. Additionally, a negative Pearson coefficient of −0.92 between the ratio area: perimeter and adventitious root formation showed that laser patterns with large wounded area with less borders led to a reduced rooting response. The results provide evidence of how wounded tissue contributes to the intrinsic development of adventitious roots and reveal the importance of proper wound dimensions.</p></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304423824008008/pdfft?md5=403ed90d891f6e7716b3cd8fb3705723&pid=1-s2.0-S0304423824008008-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824008008","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The stimulation of adventitious root formation from laser-wounded rose cuttings in our previous study suggests that exposing the phloem proximities is one of the most relevant aspects for a positive effect on rooting response. But, the specific dimensions that wound patterns must fulfill to optimize rooting promotion remain unknown. This study analyzed the effect of wounded area and wound perimeter of laser marking patterns on the development of phloem, xylem, and callus using cross sections of single-leaf cuttings of Rosa canina 'Pfänder'. Four distinct laser patterns were designed and marked along the cutting base. Among these, three patterns were based on longitudinal strips, while one pattern was characterized by small squares, resulting in two distinct wound area levels and four wound perimeter levels. Periodic evaluations of stem sections showed that the development of phloem and xylem was significantly influenced by the pattern's geometry. Larger dimensions of xylem were associated with patterns of greater area and a smaller perimeter, while an increase in phloem was related to patterns of longer perimeter distributed in smaller areas. The maximum rooting success in wounded cuttings reached 44% in contrast to 9% observed in the control group in the absence of additional wounds. The development of vascular tissue was significantly correlated with adventitious rooting, with phloem being more closely linked with a Pearson coefficient of 0.92 compared to 0.30 for xylem. Additionally, a negative Pearson coefficient of −0.92 between the ratio area: perimeter and adventitious root formation showed that laser patterns with large wounded area with less borders led to a reduced rooting response. The results provide evidence of how wounded tissue contributes to the intrinsic development of adventitious roots and reveal the importance of proper wound dimensions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光伤痕模式与血管组织发育的关系,用于刺激玫瑰插条上不定根的形成
在我们之前的研究中,激光伤玫瑰插条对不定根形成的刺激表明,暴露韧皮部近端是对生根反应产生积极影响的最相关因素之一。但是,伤口模式必须满足哪些具体要求才能达到最佳生根效果仍是未知数。本研究使用蔷薇'Pfänder'单叶插条的横截面,分析了激光标记图案的伤口面积和伤口周长对韧皮部、木质部和胼胝体发育的影响。我们设计了四种不同的激光图案,并沿插条基部进行了标记。其中,三个图案以纵向条纹为基础,一个图案以小方块为特征,从而形成了两个不同的伤口面积等级和四个伤口周长等级。对茎干切片的定期评估表明,韧皮部和木质部的发育受图案几何形状的显著影响。木质部的较大尺寸与面积较大、周长较小的图案有关,而韧皮部的增加与周长较长、面积较小的图案有关。受伤插条的最大生根成功率达到 44%,而对照组在没有额外伤口的情况下只有 9%。维管组织的发展与不定根有显著的相关性,韧皮部与不定根的关系更为密切,其皮尔逊系数为 0.92,而木质部的皮尔逊系数为 0.30。此外,面积:周长比率与不定根形成之间的负 Pearson 系数为-0.92,这表明激光图案的受伤面积大而边界少会导致生根反应减弱。这些结果提供了受伤组织如何促进不定根内在发展的证据,并揭示了适当伤口尺寸的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientia Horticulturae
Scientia Horticulturae 农林科学-园艺
CiteScore
8.60
自引率
4.70%
发文量
796
审稿时长
47 days
期刊介绍: Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.
期刊最新文献
Impact of pre-harvest UVC treatment on powdery mildew infection and strawberry quality in tunnel production in Nordic conditions Characterization of pummelo (Citrus grandis L.) hybrid population for economic traits Characterization of key aroma compounds of tomato quality under enriched CO2 coupled with water and nitrogen based on E-nose and GC–MS Enhancing horticultural harvest efficiency: The role of moisture content in ultrasonic cutting of tomato stems Effects of biochar application on soil properties and the growth of Melissa officinalis L. under salt stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1