Effects of chitosan hydrolysate on control of postharvest infection caused by Botrytis cinerea and physiological responses of wounded tomato fruit

IF 3.9 2区 农林科学 Q1 HORTICULTURE Scientia Horticulturae Pub Date : 2024-09-14 DOI:10.1016/j.scienta.2024.113656
Tatiana Lyalina, Balzhima Shagdarova, Alla Il'ina, Yuliya Zhuikova, Alexey Lunkov, Sergei Lopatin, Valery Varlamov
{"title":"Effects of chitosan hydrolysate on control of postharvest infection caused by Botrytis cinerea and physiological responses of wounded tomato fruit","authors":"Tatiana Lyalina,&nbsp;Balzhima Shagdarova,&nbsp;Alla Il'ina,&nbsp;Yuliya Zhuikova,&nbsp;Alexey Lunkov,&nbsp;Sergei Lopatin,&nbsp;Valery Varlamov","doi":"10.1016/j.scienta.2024.113656","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan is considered an eco-friendly plant protection agent. Chitosan hydrolysate (CH) with an average molecular weight (MW) of the main fraction of 135 × 10<sup>3</sup> Da, with a deacetylation degree (DD) of 93 % is an unfractionated product of nitric acid hydrolysis of high molecular weight chitosan. The effect of the CH on gray mold caused by <em>Botrytis cinerea</em> in tomato fruit stored at 25 °C was investigated. Chitosan provided effective control of <em>B. cinerea</em> on tomato fruit. The CH treatment of wounded tomato fruit had a protective effect, reducing the percentage of infected fruit on the 7 d after treatment to 50 %, compared with untreated wounded fruit (69 %) and water-treated fruit (88 %). The protective effect of the CH in tomato fruit may be due to a direct fungitoxic action against the pathogen. It was found that the CH induced an immune response in tomato fruit via the accumulation of phenolic compounds. The level of phenolic compounds in the CH group was higher than in the untreated wound group from day 1 to 5, with a maximum reached on day 3 (113 mg-eq GA kg<sup>-1</sup>). No significant differences were found in the activities of peroxidase, phenylalanine ammonia lyase, polyphenol oxidase, β-1,3-glucanase and chitinase. Thus, the CH affects the processes occurring during fruit damage and contributes to the preservation of the consumer qualities of fruit.</p></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824008094","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan is considered an eco-friendly plant protection agent. Chitosan hydrolysate (CH) with an average molecular weight (MW) of the main fraction of 135 × 103 Da, with a deacetylation degree (DD) of 93 % is an unfractionated product of nitric acid hydrolysis of high molecular weight chitosan. The effect of the CH on gray mold caused by Botrytis cinerea in tomato fruit stored at 25 °C was investigated. Chitosan provided effective control of B. cinerea on tomato fruit. The CH treatment of wounded tomato fruit had a protective effect, reducing the percentage of infected fruit on the 7 d after treatment to 50 %, compared with untreated wounded fruit (69 %) and water-treated fruit (88 %). The protective effect of the CH in tomato fruit may be due to a direct fungitoxic action against the pathogen. It was found that the CH induced an immune response in tomato fruit via the accumulation of phenolic compounds. The level of phenolic compounds in the CH group was higher than in the untreated wound group from day 1 to 5, with a maximum reached on day 3 (113 mg-eq GA kg-1). No significant differences were found in the activities of peroxidase, phenylalanine ammonia lyase, polyphenol oxidase, β-1,3-glucanase and chitinase. Thus, the CH affects the processes occurring during fruit damage and contributes to the preservation of the consumer qualities of fruit.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖水解物对控制收获后葡萄孢菌感染的影响以及受伤番茄果实的生理反应
壳聚糖被认为是一种生态友好型植物保护剂。壳聚糖水解物(CH)是硝酸水解高分子量壳聚糖的未分馏产物,其主要馏分的平均分子量(MW)为 135 × 103 Da,脱乙酰度(DD)为 93%。研究了壳聚糖对 25 °C 下贮藏的番茄果实中由灰霉病菌引起的灰霉病的影响。壳聚糖能有效控制番茄果实上的灰霉病菌。对受伤的番茄果实进行 CH 处理具有保护作用,与未处理的受伤果实(69%)和用水处理的果实(88%)相比,处理后 7 天受感染果实的比例降低到 50%。CH 对番茄果实的保护作用可能是由于其对病原体的直接杀菌作用。研究发现,CH 可通过酚类化合物的积累诱导番茄果实产生免疫反应。从第 1 天到第 5 天,CH 组的酚类化合物含量都高于未处理伤口组,第 3 天达到最高值(113 mg-eq GA kg-1)。过氧化物酶、苯丙氨酸氨裂解酶、多酚氧化酶、β-1,3-葡聚糖酶和几丁质酶的活性没有明显差异。因此,CH 会影响水果受损过程,有助于保持水果的消费品质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientia Horticulturae
Scientia Horticulturae 农林科学-园艺
CiteScore
8.60
自引率
4.70%
发文量
796
审稿时长
47 days
期刊介绍: Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.
期刊最新文献
Impact of pre-harvest UVC treatment on powdery mildew infection and strawberry quality in tunnel production in Nordic conditions Characterization of pummelo (Citrus grandis L.) hybrid population for economic traits Characterization of key aroma compounds of tomato quality under enriched CO2 coupled with water and nitrogen based on E-nose and GC–MS Enhancing horticultural harvest efficiency: The role of moisture content in ultrasonic cutting of tomato stems Effects of biochar application on soil properties and the growth of Melissa officinalis L. under salt stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1