Deflection estimation of reinforced concrete beams using long-gauge optic sensors

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-09-14 DOI:10.1016/j.istruc.2024.107249
{"title":"Deflection estimation of reinforced concrete beams using long-gauge optic sensors","authors":"","doi":"10.1016/j.istruc.2024.107249","DOIUrl":null,"url":null,"abstract":"<div><p>Deflection is a crucial indicator in structural health monitoring, directly impacting the service life, safety, and economic viability of structures. However, current indirect methods for measuring deflection, such as multi-element FBG sensors or accelerometers, often have limitations. While they may be suitable for flexure-dominated reinforced concrete (RC) specimens in the elastic stage, they neglect the significant influence of nonlinearity and shear deformation. This paper introduces a new approach for estimating the deflection of reinforced concrete (RC) beams using distributed long-gauge optic sensors. The method tackles the limitations of current methods by incorporating the crucial factors of shear deformation, neutral axis position variation and shear stiffness degradation. Experimental studies are first conducted to validate the accuracy and stability of long-gauge optic sensors in small-scale RC members. Algorithms are then utilized the measurement data to estimate the deflection. The results demonstrate the excellent performance of long-gauge optic sensors in measuring shear deformation and vertical deflection of RC beams, as evidenced by comparisons with LVDT measurements. Additionally, a method for decoupling flexural and shear deformation is proposed. This method offers a preliminary assessment of the reinforced concrete (RC) beam type by quantifying the relative significance of shear deformation.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424014012","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Deflection is a crucial indicator in structural health monitoring, directly impacting the service life, safety, and economic viability of structures. However, current indirect methods for measuring deflection, such as multi-element FBG sensors or accelerometers, often have limitations. While they may be suitable for flexure-dominated reinforced concrete (RC) specimens in the elastic stage, they neglect the significant influence of nonlinearity and shear deformation. This paper introduces a new approach for estimating the deflection of reinforced concrete (RC) beams using distributed long-gauge optic sensors. The method tackles the limitations of current methods by incorporating the crucial factors of shear deformation, neutral axis position variation and shear stiffness degradation. Experimental studies are first conducted to validate the accuracy and stability of long-gauge optic sensors in small-scale RC members. Algorithms are then utilized the measurement data to estimate the deflection. The results demonstrate the excellent performance of long-gauge optic sensors in measuring shear deformation and vertical deflection of RC beams, as evidenced by comparisons with LVDT measurements. Additionally, a method for decoupling flexural and shear deformation is proposed. This method offers a preliminary assessment of the reinforced concrete (RC) beam type by quantifying the relative significance of shear deformation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用长规光学传感器估算钢筋混凝土梁的挠度
挠度是结构健康监测的一个重要指标,直接影响结构的使用寿命、安全性和经济可行性。然而,目前测量挠度的间接方法(如多元件 FBG 传感器或加速度计)往往存在局限性。虽然这些方法可能适用于弹性阶段以弯曲为主的钢筋混凝土 (RC) 试件,但它们忽略了非线性和剪切变形的重要影响。本文介绍了一种利用分布式长规光学传感器估算钢筋混凝土 (RC) 梁挠度的新方法。该方法结合了剪切变形、中轴位置变化和剪切刚度退化等关键因素,解决了现有方法的局限性。首先进行了实验研究,以验证长轨距光学传感器在小型 RC 构件中的精度和稳定性。然后利用测量数据的算法来估算挠度。结果表明,长量规光学传感器在测量 RC 梁的剪切变形和垂直挠度方面表现出色,这一点通过与 LVDT 测量结果的比较得到了证明。此外,还提出了一种解耦弯曲变形和剪切变形的方法。该方法通过量化剪切变形的相对重要性,对钢筋混凝土 (RC) 梁的类型进行了初步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Experimental study on acoustic emission damage in precast reinforced concrete interior joints containing disc springs Experimental and numerical studies on the mechanical behavior of metallic connecting pieces in point-supported glass facades A new cross section hypothesis-based approach for quantifying deployment characteristics of deployable inflatable structures Numerical study on seismic performance of a prefabricated subway station considering the influence of construction process Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1