Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-09-15 DOI:10.1016/j.istruc.2024.107275
{"title":"Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels","authors":"","doi":"10.1016/j.istruc.2024.107275","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a sliding-type rapid joint and investigates the joint's failure modes under compression-shear loading with a combination of numerical and experimental methods. The study analyzes the influence of axial force, arrangement methods, and segment thickness on the joint's shear resistance. Additionally, a detailed examination of stress distribution within the joints provides a deeper understanding of their mechanical behavior. The results reveal that four-stage exists in the shear-dislocation curve of joints, including static frictional stage, partial sliding stage, overall sliding stage, and descending stage. Increasing axial force enhances the joint's shear resistance, but excessively high axial forces raise the risk of shear failure in T-shaped components. Under the trans-arrangement, the sliding-type rapid segmental joint exhibits superior shear resistance, especially under high axial loads. The material strength of C-shaped components impacts the joint's shear resistance, and increasing segment thickness enhances the joint's shear resistance. Under reverse-radial shear conditions, the structure's shear capacity is not solely determined by the joint strength. Tangential shear occurs during the assembly process, emphasizing the need to avoid excessive assembly forces. The junction between the T-shaped structure and the joint panel is a vulnerable point for T-shaped components, and reinforcement by increasing size and thickness can prevent shear failure at this location.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424014279","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a sliding-type rapid joint and investigates the joint's failure modes under compression-shear loading with a combination of numerical and experimental methods. The study analyzes the influence of axial force, arrangement methods, and segment thickness on the joint's shear resistance. Additionally, a detailed examination of stress distribution within the joints provides a deeper understanding of their mechanical behavior. The results reveal that four-stage exists in the shear-dislocation curve of joints, including static frictional stage, partial sliding stage, overall sliding stage, and descending stage. Increasing axial force enhances the joint's shear resistance, but excessively high axial forces raise the risk of shear failure in T-shaped components. Under the trans-arrangement, the sliding-type rapid segmental joint exhibits superior shear resistance, especially under high axial loads. The material strength of C-shaped components impacts the joint's shear resistance, and increasing segment thickness enhances the joint's shear resistance. Under reverse-radial shear conditions, the structure's shear capacity is not solely determined by the joint strength. Tangential shear occurs during the assembly process, emphasizing the need to avoid excessive assembly forces. The junction between the T-shaped structure and the joint panel is a vulnerable point for T-shaped components, and reinforcement by increasing size and thickness can prevent shear failure at this location.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盾构隧道滑动式快速分段接头抗剪性能研究
本文介绍了一种滑动式快速接头,并结合数值和实验方法研究了该接头在压缩-剪切载荷作用下的失效模式。研究分析了轴向力、布置方法和节段厚度对接头抗剪性能的影响。此外,通过对接头内部应力分布的详细研究,可以更深入地了解接头的机械行为。研究结果表明,接头的剪切-位移曲线存在四个阶段,包括静摩擦阶段、部分滑动阶段、整体滑动阶段和下降阶段。增加轴向力可以提高接头的抗剪能力,但过高的轴向力会增加 T 型部件发生剪切破坏的风险。在横向布置下,滑动式快速分段连接具有更优越的抗剪切性能,尤其是在高轴向载荷下。C 型部件的材料强度会影响接头的抗剪性,而增加分段厚度则会增强接头的抗剪性。在反径向剪切条件下,结构的抗剪能力并不完全取决于连接强度。切向剪切发生在组装过程中,因此需要避免过大的组装力。T 型结构与连接板之间的交界处是 T 型构件的易损点,通过增加尺寸和厚度进行加固可防止该位置出现剪切失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Experimental study on acoustic emission damage in precast reinforced concrete interior joints containing disc springs Experimental and numerical studies on the mechanical behavior of metallic connecting pieces in point-supported glass facades A new cross section hypothesis-based approach for quantifying deployment characteristics of deployable inflatable structures Numerical study on seismic performance of a prefabricated subway station considering the influence of construction process Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1