Heat-Flow-Driven Nonequilibria for Prebiotic Chemistry

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemSystemsChem Pub Date : 2024-08-02 DOI:10.1002/syst.202400039
Christof B. Mast
{"title":"Heat-Flow-Driven Nonequilibria for Prebiotic Chemistry","authors":"Christof B. Mast","doi":"10.1002/syst.202400039","DOIUrl":null,"url":null,"abstract":"<p>The origin of life, being one of the most fascinating questions in science, is increasingly addressed by interdisciplinary research. In addition to developing plausible chemical models for synthesizing the first biomolecules from prebiotic building blocks, searching for suitable and plausible non-equilibrium boundary conditions that drive such reactions is thus a central task in this endeavor. This perspective highlights the remarkably simple yet versatile scenario of heat flows in geologically plausible crack-like compartments as a habitat for prebiotic chemistry. Based on our recent findings, it is discussed how thermophoretically driven systems offer insights into solving key milestones in the origin of life research, such as the template inhibition problem, prebiotic symmetry breaking, and the promotion of prebiotic chemistry by selective enrichment of biochemical precursors. Our results on molecular-selective thermogravitational accumulation, heat flow-induced pH gradients, and environmental cycles are put in the context of other approaches to non-equilibrium systems and prebiotic chemistry. The coupling of heat flows to chemical and physical boundary conditions thus opens up numerous future experimental research avenues, such as the extraction of phosphate from geomaterials or the integration of chemical reaction networks into thermal non-equilibrium systems, offering a promising framework for advancing the field of prebiotic chemistry.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202400039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of life, being one of the most fascinating questions in science, is increasingly addressed by interdisciplinary research. In addition to developing plausible chemical models for synthesizing the first biomolecules from prebiotic building blocks, searching for suitable and plausible non-equilibrium boundary conditions that drive such reactions is thus a central task in this endeavor. This perspective highlights the remarkably simple yet versatile scenario of heat flows in geologically plausible crack-like compartments as a habitat for prebiotic chemistry. Based on our recent findings, it is discussed how thermophoretically driven systems offer insights into solving key milestones in the origin of life research, such as the template inhibition problem, prebiotic symmetry breaking, and the promotion of prebiotic chemistry by selective enrichment of biochemical precursors. Our results on molecular-selective thermogravitational accumulation, heat flow-induced pH gradients, and environmental cycles are put in the context of other approaches to non-equilibrium systems and prebiotic chemistry. The coupling of heat flows to chemical and physical boundary conditions thus opens up numerous future experimental research avenues, such as the extraction of phosphate from geomaterials or the integration of chemical reaction networks into thermal non-equilibrium systems, offering a promising framework for advancing the field of prebiotic chemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前生物化学中的热流驱动非平衡态
生命起源是科学界最引人入胜的问题之一,越来越多的跨学科研究都在探讨这一问题。因此,除了开发可信的化学模型,从生物前构件中合成首批生物分子外,寻找合适、可信的非平衡边界条件来驱动此类反应也是这项工作的核心任务。从这个角度看,在地质学上看似合理的裂缝状隔间中的热流作为前生物化学的栖息地,是非常简单而又多变的方案。基于我们最近的研究成果,我们讨论了热物理驱动系统如何为解决生命起源研究中的关键里程碑问题(如模板抑制问题、先生物对称性破缺以及通过选择性富集生化前体促进先生物化学)提供见解。我们在分子选择性热重积聚、热流诱导的 pH 梯度和环境循环方面的研究成果,与其他研究非平衡系统和前生物化学的方法相结合。因此,热流与化学和物理边界条件的耦合开辟了许多未来的实验研究途径,如从地质材料中提取磷酸盐或将化学反应网络整合到热非平衡态系统中,为推进前生物化学领域的发展提供了一个前景广阔的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Effect of Temperature on Calcium-Based Chemical Garden Growth (ChemSystemsChem 5/2024) Heat-Flow-Driven Nonequilibria for Prebiotic Chemistry Photoswitchable Surfactants–Are there Alternatives to Azobenzene-Based Systems? Nonequilibrium Membrane Dynamics Induced by  Active Protein Interactions and Chemical Reactions: A Review Molecular Information Processing in a Chemical Reaction Network using Surface‐Mediated Polyelectrolyte Complexation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1