{"title":"Effect of Temperature on Calcium-Based Chemical Garden Growth","authors":"Dr. Pamela Knoll, Dr. Corentin C. Loron","doi":"10.1002/syst.202400012","DOIUrl":null,"url":null,"abstract":"<p>Hydrothermal vents maintain far-from equilibrium conditions that may have provided the necessary settings for the origin of life. To understand reactions under these physicochemical conditions, scientists have turned to the classic demonstration experiment, chemical gardens. The self-organization of precipitate tubes separates high and low pH environments similarly to the naturally occurring geological structures. Here, we report calcium-based chemical gardens forming in solutions containing anions of silicate, carbonate, or a mixture of the two in 100 °C and 23 °C environments. Under high temperature conditions, chemical gardens tend to have faster average growth velocities and form taller structures. We measure the composition of the precipitate tubes using Fourier transform infrared spectroscopy and find the formation of all polymorphs of calcium carbonate along with calcium silicates.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"6 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202400012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202400012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrothermal vents maintain far-from equilibrium conditions that may have provided the necessary settings for the origin of life. To understand reactions under these physicochemical conditions, scientists have turned to the classic demonstration experiment, chemical gardens. The self-organization of precipitate tubes separates high and low pH environments similarly to the naturally occurring geological structures. Here, we report calcium-based chemical gardens forming in solutions containing anions of silicate, carbonate, or a mixture of the two in 100 °C and 23 °C environments. Under high temperature conditions, chemical gardens tend to have faster average growth velocities and form taller structures. We measure the composition of the precipitate tubes using Fourier transform infrared spectroscopy and find the formation of all polymorphs of calcium carbonate along with calcium silicates.
热液喷口维持着远非平衡的条件,可能为生命的起源提供了必要的环境。为了了解这些物理化学条件下的反应,科学家们转向了经典的演示实验--化学花园。沉淀管的自组织将高pH值和低pH值环境分隔开来,与自然形成的地质结构类似。在此,我们报告了在 100 °C 和 23 °C 环境中,在含有硅酸盐、碳酸盐或两者混合物阴离子的溶液中形成的钙基化学花园。在高温条件下,化学花园的平均生长速度更快,形成的结构也更高。我们使用傅立叶变换红外光谱法测量沉淀管的成分,发现碳酸钙和硅酸钙的所有多晶体都已形成。