Effects of Tidal Range and Significant Wave Height on Delta Development

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-09-14 DOI:10.1029/2024JF007688
Ewan Sloan, Nicholas Dodd, Riccardo Briganti
{"title":"Effects of Tidal Range and Significant Wave Height on Delta Development","authors":"Ewan Sloan,&nbsp;Nicholas Dodd,&nbsp;Riccardo Briganti","doi":"10.1029/2024JF007688","DOIUrl":null,"url":null,"abstract":"<p>Only around 40% of rivers globally have deltas, but the conditions which inhibit or facilitate river delta formation are not well understood. Many studies have investigated the response of delta development to marine and river conditions. However, few have investigated the limits of such processes beyond which delta formation may be prevented, and none have done so using numerical modeling. This is in part due to ambiguity in the definition of the term “delta,” which can make identification difficult in ambiguous cases. Here we propose a systematic method for identifying deltas, based on: accumulation of sediment above the low tide water level; proximity of such deposits to the initial coastline; and the presence of active channels. We run 42 simulations with identical river <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1280</mn>\n <mspace></mspace>\n <msup>\n <mtext>m</mtext>\n <mn>3</mn>\n </msup>\n <msup>\n <mtext>s</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(1280\\ {\\text{m}}^{3}{\\text{s}}^{-1})$</annotation>\n </semantics></math> and sediment <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>0.048</mn>\n <mspace></mspace>\n <msup>\n <mtext>m</mtext>\n <mn>3</mn>\n </msup>\n <msup>\n <mtext>s</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(0.048\\ {\\text{m}}^{3}{\\text{s}}^{-1})$</annotation>\n </semantics></math> discharges, under combinations of significant wave height and tidal range typical for coasts globally, and determine if/when a delta is formed by this definition. Where deltas do form, we classify four formational regimes—river-controlled, river/tide-controlled, wave-controlled, and wave/tide-controlled—and discuss the mechanisms of delta development for each regime. Furthermore, we find that, under the discharge conditions considered, delta formation is prevented for combinations of, approximately, significant wave heights of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mn>2.0</mn>\n <mspace></mspace>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $2.0\\ \\mathrm{m}$</annotation>\n </semantics></math> and tidal ranges <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>≥</mo>\n <mn>3.0</mn>\n <mspace></mspace>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> ${\\ge} 3.0\\ \\mathrm{m}$</annotation>\n </semantics></math>. We hypothesize that inhibition of delta formation can be explained as a consequence of sufficient marine-driven alongshore sediment transport. This is tested by deriving a 1D alongshore sediment diffusion equation, and comparing predictions made using this formula to the cross-shore integrated sediment volumes of the simulations.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007688","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007688","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Only around 40% of rivers globally have deltas, but the conditions which inhibit or facilitate river delta formation are not well understood. Many studies have investigated the response of delta development to marine and river conditions. However, few have investigated the limits of such processes beyond which delta formation may be prevented, and none have done so using numerical modeling. This is in part due to ambiguity in the definition of the term “delta,” which can make identification difficult in ambiguous cases. Here we propose a systematic method for identifying deltas, based on: accumulation of sediment above the low tide water level; proximity of such deposits to the initial coastline; and the presence of active channels. We run 42 simulations with identical river ( 1280 m 3 s 1 ) $(1280\ {\text{m}}^{3}{\text{s}}^{-1})$ and sediment ( 0.048 m 3 s 1 ) $(0.048\ {\text{m}}^{3}{\text{s}}^{-1})$ discharges, under combinations of significant wave height and tidal range typical for coasts globally, and determine if/when a delta is formed by this definition. Where deltas do form, we classify four formational regimes—river-controlled, river/tide-controlled, wave-controlled, and wave/tide-controlled—and discuss the mechanisms of delta development for each regime. Furthermore, we find that, under the discharge conditions considered, delta formation is prevented for combinations of, approximately, significant wave heights of 2.0 m $2.0\ \mathrm{m}$ and tidal ranges 3.0 m ${\ge} 3.0\ \mathrm{m}$ . We hypothesize that inhibition of delta formation can be explained as a consequence of sufficient marine-driven alongshore sediment transport. This is tested by deriving a 1D alongshore sediment diffusion equation, and comparing predictions made using this formula to the cross-shore integrated sediment volumes of the simulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潮差和显著波高对三角洲发展的影响
全球只有约 40% 的河流有三角洲,但人们对抑制或促进河流三角洲形成的条件并不十分了解。许多研究调查了三角洲的形成对海洋和河流条件的影响。然而,很少有人研究过这些过程的极限,超过这个极限就可能阻止三角洲的形成,也没有人使用数值模型来进行研究。这部分是由于 "三角洲 "一词的定义含糊不清,在模棱两可的情况下很难识别。在此,我们提出了一种识别三角洲的系统方法,其依据是:低潮水位以上沉积物的堆积;这些沉积物与初始海岸线的距离;以及是否存在活动河道。我们在全球海岸典型的显著波高和潮差组合下,对相同的河流(1280 m 3 s - 1 )$(1280\{text{m}}^{3}{text{s}^{-1})$和泥沙(0.048 m 3 s - 1 )$(0.048\{text{m}}^{3}{text{s}^{-1})$排水量进行了 42 次模拟,并根据这一定义确定三角洲是否/何时形成。在三角洲确实形成的情况下,我们将其分为四种形成机制--河流控制型、河流/潮汐控制型、波浪控制型和波浪/潮汐控制型,并讨论了每种机制的三角洲发展机制。此外,我们还发现,在所考虑的排水条件下,大约在显波高度为 2.0 m $2.0\mathrm{m}$ 和潮汐范围≥ 3.0 m ${\ge} 的组合下,三角洲的形成会受到阻碍。3.0 (mathrm{m}$)。我们假设,三角洲形成的抑制作用可以解释为足够的海洋驱动的沿岸沉积物运移的结果。我们推导出一个一维沿岸沉积物扩散方程,并将该方程的预测结果与模拟结果中的跨岸综合沉积物量进行比较,从而验证了这一假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Field Validation of the Superelevation Method for Debris-Flow Velocity Estimation Using High-Resolution Lidar and UAV Data Influence of Lithology and Biota on Stream Erosivity and Drainage Density in a Semi-Arid Landscape, Central Chile Erosional Response to Pleistocene Climate Changes in the Brazilian Highlands Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1