How Can Deep Neural Networks Inform Theory in Psychological Science?

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-09-14 DOI:10.1177/09637214241268098
Sam Whitman McGrath, Jacob Russin, Ellie Pavlick, Roman Feiman
{"title":"How Can Deep Neural Networks Inform Theory in Psychological Science?","authors":"Sam Whitman McGrath, Jacob Russin, Ellie Pavlick, Roman Feiman","doi":"10.1177/09637214241268098","DOIUrl":null,"url":null,"abstract":"Over the last decade, deep neural networks (DNNs) have transformed the state of the art in artificial intelligence. In domains such as language production and reasoning, long considered uniquely human abilities, contemporary models have proven capable of strikingly human-like performance. However, in contrast to classical symbolic models, neural networks can be inscrutable even to their designers, making it unclear what significance, if any, they have for theories of human cognition. Two extreme reactions are common. Neural network enthusiasts argue that, because the inner workings of DNNs do not seem to resemble any of the traditional constructs of psychological or linguistic theory, their success renders these theories obsolete and motivates a radical paradigm shift. Neural network skeptics instead take this inability to interpret DNNs in psychological terms to mean that their success is irrelevant to psychological science. In this article, we review recent work that suggests that the internal mechanisms of DNNs can, in fact, be interpreted in the functional terms characteristic of psychological explanations. We argue that this undermines the shared assumption of both extremes and opens the door for DNNs to inform theories of cognition and its development.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09637214241268098","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last decade, deep neural networks (DNNs) have transformed the state of the art in artificial intelligence. In domains such as language production and reasoning, long considered uniquely human abilities, contemporary models have proven capable of strikingly human-like performance. However, in contrast to classical symbolic models, neural networks can be inscrutable even to their designers, making it unclear what significance, if any, they have for theories of human cognition. Two extreme reactions are common. Neural network enthusiasts argue that, because the inner workings of DNNs do not seem to resemble any of the traditional constructs of psychological or linguistic theory, their success renders these theories obsolete and motivates a radical paradigm shift. Neural network skeptics instead take this inability to interpret DNNs in psychological terms to mean that their success is irrelevant to psychological science. In this article, we review recent work that suggests that the internal mechanisms of DNNs can, in fact, be interpreted in the functional terms characteristic of psychological explanations. We argue that this undermines the shared assumption of both extremes and opens the door for DNNs to inform theories of cognition and its development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经网络如何为心理科学提供理论依据?
在过去的十年中,深度神经网络(DNN)改变了人工智能的技术水平。在语言生成和推理等长期以来被认为是人类独有能力的领域,当代模型已被证明能够实现惊人的类人性能。然而,与经典的符号模型相比,神经网络甚至连设计者都难以捉摸,这使得人们不清楚它们对人类认知理论究竟有什么意义。两种极端的反应很常见。神经网络爱好者认为,由于 DNN 的内部运作似乎与心理学或语言学理论的任何传统构造都不相似,它们的成功使这些理论变得过时,并促使范式发生彻底转变。神经网络怀疑论者反而认为,无法用心理学术语解释 DNN 意味着它们的成功与心理科学无关。在本文中,我们回顾了最近的研究,这些研究表明 DNN 的内部机制实际上可以用心理学解释所特有的功能术语来解释。我们认为,这破坏了两个极端的共同假设,并为 DNNs 为认知及其发展理论提供信息打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. "Lupus Myelitis" Revisited: A Retrospective Single-Center Study of Myelitis Associated With Rheumatologic Disease. Missing Full Disclosures. Clinical and Radiographic Improvement Following Steroid Therapy in Subacute Post-Traumatic Ascending Myelopathy. Lumipulse-Measured Cerebrospinal Fluid Biomarkers for the Early Detection of Alzheimer Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1