Dimitra Chatzitheodoridou,Daniela Bureik,Francesco Padovani,Kalyan V Nadimpalli,Kurt M Schmoller
{"title":"Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients.","authors":"Dimitra Chatzitheodoridou,Daniela Bureik,Francesco Padovani,Kalyan V Nadimpalli,Kurt M Schmoller","doi":"10.1038/s44318-024-00227-w","DOIUrl":null,"url":null,"abstract":"To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-024-00227-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.
为了在不断变化的营养环境中维持蛋白质的平衡,细胞必须精确控制蛋白质的数量,尽管细胞生长和生物合成能力也会随之发生变化。由于营养物质是细胞周期长度和进程的主要调控因素,因此依赖营养物质调控在细胞周期中周期性表达的 "细胞周期基因 "面临着特殊的挑战。组蛋白就是一个重要的例子,组蛋白对 DNA 的比例需要保持恒定。在这里,我们展示了芽殖酵母在不同营养物质中通过转录本和蛋白质丰度的解耦来实现组蛋白的平衡。我们发现,细胞在营养不良的情况下会下调组蛋白转录本,以避免毒性组蛋白过度表达,但会通过营养特异性调节翻译效率来产生恒定数量的组蛋白。我们的研究结果表明,这使得细胞能够在快速生长条件下的组蛋白快速生产需求与在贫瘠营养条件下避免毒性过表达所需的严格调控之间取得平衡。