Renewable Zn/S-1 catalyst with dual active sites for acetylene acetoxylation

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-09-11 DOI:10.1016/j.micromeso.2024.113333
Ying Zhang , Qinqin Wang , Mingyuan Zhu , Bin Dai
{"title":"Renewable Zn/S-1 catalyst with dual active sites for acetylene acetoxylation","authors":"Ying Zhang ,&nbsp;Qinqin Wang ,&nbsp;Mingyuan Zhu ,&nbsp;Bin Dai","doi":"10.1016/j.micromeso.2024.113333","DOIUrl":null,"url":null,"abstract":"<div><p>The prevailing Zn/AC catalysts was plagued by limited lifetime and difficulties in regeneration for acetylene acetoxylation. In order to exploring renewable catalyst for acetylene acetoxylation, Zn/S-1 catalyst was synthesized using Silicalite-1(S-1) as support. The catalytic performance of Zn/S-1 was compared with Zn/AC catalyst using active carbon as support. The CH<sub>3</sub>COOH conversion of Zn/S-1 catalyst only decreased 15 % after running 225 h, much better than the 66 % of Zn/AC after 154 h. TG analysis revealed that the improved stability of Zn/S-1 catalyst was attributed to its better resistance for carbon deposition with the presence of S-1 support. A series of characterizations and DFT results elucidated that the Lewis acid sites of S-1 support and Zn component serve as dual active sites, which enhanced the adsorption of CH<sub>3</sub>COOH and inhibited the carbon deposition. In addition, the deactivated Zn/S-1 catalyst could be regenerated by calcination in air atmosphere due to the thermal stability of S-1, and the regenerated Zn/S-1 catalyst showed similar catalytic activity with the fresh catalyst.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113333"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138718112400355X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The prevailing Zn/AC catalysts was plagued by limited lifetime and difficulties in regeneration for acetylene acetoxylation. In order to exploring renewable catalyst for acetylene acetoxylation, Zn/S-1 catalyst was synthesized using Silicalite-1(S-1) as support. The catalytic performance of Zn/S-1 was compared with Zn/AC catalyst using active carbon as support. The CH3COOH conversion of Zn/S-1 catalyst only decreased 15 % after running 225 h, much better than the 66 % of Zn/AC after 154 h. TG analysis revealed that the improved stability of Zn/S-1 catalyst was attributed to its better resistance for carbon deposition with the presence of S-1 support. A series of characterizations and DFT results elucidated that the Lewis acid sites of S-1 support and Zn component serve as dual active sites, which enhanced the adsorption of CH3COOH and inhibited the carbon deposition. In addition, the deactivated Zn/S-1 catalyst could be regenerated by calcination in air atmosphere due to the thermal stability of S-1, and the regenerated Zn/S-1 catalyst showed similar catalytic activity with the fresh catalyst.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于乙炔乙酰氧基化的具有双活性位点的可再生 Zn/S-1 催化剂
现有的 Zn/AC 催化剂在乙炔乙氧基化过程中存在使用寿命有限和再生困难的问题。为了探索乙炔乙氧基化的可再生催化剂,研究人员以硅灰石-1(S-1)为载体合成了 Zn/S-1 催化剂。将 Zn/S-1 催化剂的催化性能与以活性炭为载体的 Zn/AC 催化剂进行了比较。TG 分析表明,Zn/S-1 催化剂稳定性的提高归因于其在 S-1 支持下具有更好的抗碳沉积能力。一系列表征和 DFT 结果表明,S-1 载体的路易斯酸位点和 Zn 成分是双重活性位点,可增强对 CH3COOH 的吸附并抑制碳沉积。此外,由于 S-1 具有热稳定性,失活的 Zn/S-1 催化剂可在空气中煅烧再生,再生后的 Zn/S-1 催化剂具有与新鲜催化剂相似的催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Editorial Board Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes Catalytic COS formation on ion-exchanged LTA zeolites during adsorption Fabrication of LTA zeolite core and UiO-66 shell structures via surface zeta potential modulation and sequential seeded growth for zeolite/polymer composite membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1