{"title":"Reusable pyrene-based fluorescent organogels for polychlorinated biphenyl detection and removal","authors":"","doi":"10.1016/j.eurpolymj.2024.113456","DOIUrl":null,"url":null,"abstract":"<div><p>Highly toxic hydrophobic polychlorinated biphenyls (PCBs) pollutants are resistant to degradation, and limited methods are available for their elimination, leading to their long-term persistence in ecosystems, which can harm humans and the environment. Therefore, early detection, removal, and continuous monitoring of PCBs are crucial. In this study, a novel fluorescent polymeric probe (P1) to detect PCB congeners (77, 118, and 126) in water was developed. P1 was synthesized by incorporating <em>N,N’</em>-dimethylacrylamide (DMAA) and pyren-1-ylmethyl methacrylate (PyMMA) to form p(DMAA-<em>co</em>-PyMMA). P1 demonstrated high sensitivity toward the most toxic coplanar PCB congeners, 77 and 126, via a fluorescence turn-on mechanism. This sensitivity was attributed to hydrophobic and π–π interactions between the PCBs and PyMMA units of P1. The detection limits for PCB congeners 77 and 126 were determined to be 0.028 and 0.039 mM, respectively. However, PCB 118, a mixed planar congener, exhibited less detection sensitivity than PCB 77 and 126. A porous three-dimensional polymeric organogel (OG) comprising butyl acrylate, PyMMA, and a cross-linker ethylene glycol dimethacrylate was synthesized for practical application. The OG selectively removed PCBs compared to other competing pollutants due to the high hydrophobicity of the PCBs, achieving removal rates of 63 % for PCB 77 and 55 % for PCB 126. The large surface area of the OG facilitated enhanced hydrophobic and π-π interactions between the PCBs and pyrene units. This work emphasizes the efficacy of P1 in detecting PCBs and the potential of using OG in eliminating PCBs, offering a viable method for monitoring and remedying PCB-contaminated environments.</p></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724007171","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Highly toxic hydrophobic polychlorinated biphenyls (PCBs) pollutants are resistant to degradation, and limited methods are available for their elimination, leading to their long-term persistence in ecosystems, which can harm humans and the environment. Therefore, early detection, removal, and continuous monitoring of PCBs are crucial. In this study, a novel fluorescent polymeric probe (P1) to detect PCB congeners (77, 118, and 126) in water was developed. P1 was synthesized by incorporating N,N’-dimethylacrylamide (DMAA) and pyren-1-ylmethyl methacrylate (PyMMA) to form p(DMAA-co-PyMMA). P1 demonstrated high sensitivity toward the most toxic coplanar PCB congeners, 77 and 126, via a fluorescence turn-on mechanism. This sensitivity was attributed to hydrophobic and π–π interactions between the PCBs and PyMMA units of P1. The detection limits for PCB congeners 77 and 126 were determined to be 0.028 and 0.039 mM, respectively. However, PCB 118, a mixed planar congener, exhibited less detection sensitivity than PCB 77 and 126. A porous three-dimensional polymeric organogel (OG) comprising butyl acrylate, PyMMA, and a cross-linker ethylene glycol dimethacrylate was synthesized for practical application. The OG selectively removed PCBs compared to other competing pollutants due to the high hydrophobicity of the PCBs, achieving removal rates of 63 % for PCB 77 and 55 % for PCB 126. The large surface area of the OG facilitated enhanced hydrophobic and π-π interactions between the PCBs and pyrene units. This work emphasizes the efficacy of P1 in detecting PCBs and the potential of using OG in eliminating PCBs, offering a viable method for monitoring and remedying PCB-contaminated environments.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.