Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-09-16 DOI:10.1038/s43246-024-00632-y
Manisha Rajput, Sameer Kumar Mallik, Sagnik Chatterjee, Ashutosh Shukla, Sooyeon Hwang, Satyaprakash Sahoo, G. V. Pavan Kumar, Atikur Rahman
{"title":"Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing","authors":"Manisha Rajput, Sameer Kumar Mallik, Sagnik Chatterjee, Ashutosh Shukla, Sooyeon Hwang, Satyaprakash Sahoo, G. V. Pavan Kumar, Atikur Rahman","doi":"10.1038/s43246-024-00632-y","DOIUrl":null,"url":null,"abstract":"Two-dimensional transition metal dichalcogenides (TMDs)-based memristors are promising candidates for realizing artificial synapses in next-generation computing. However, practical implementation faces several challenges, such as high non-linearity and asymmetry in synaptic weight updates, limited dynamic range, and cycle-to-cycle variability. Here, utilizing optimal-power argon plasma treatment, we significantly enhance the performance matrix of memristors fabricated from monolayer MoS2. Our approach not only improves linearity and symmetry in synaptic weight updates but also increases the number of available synaptic weight updates and enhances Spike-Time Dependent Plasticity. Notably, it broadens the switching ratio by two orders, minimizes cycle-to-cycle variability, reduces non-linear factors, and achieves an energy consumption of  ~30 fJ per synaptic event. Implementation of these enhancements is demonstrated through Artificial Neural Network simulations, yielding a learning accuracy of  ~97% on the MNIST hand-written digits dataset. Our findings underscore the significance of defect engineering as a powerful tool in advancing the synaptic functionality of memristors. Memristors based on 2D materials are promising candidates for realizing artificial synapses in next-generation computing. Here, utilizing optimal-power argon plasma treatment, the authors enhance the performance of memristors fabricated from monolayer MoS2, reducing non-linearity and asymmetry in synaptic weight updates and minimizing cycle-to-cycle variability.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-14"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00632-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00632-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal dichalcogenides (TMDs)-based memristors are promising candidates for realizing artificial synapses in next-generation computing. However, practical implementation faces several challenges, such as high non-linearity and asymmetry in synaptic weight updates, limited dynamic range, and cycle-to-cycle variability. Here, utilizing optimal-power argon plasma treatment, we significantly enhance the performance matrix of memristors fabricated from monolayer MoS2. Our approach not only improves linearity and symmetry in synaptic weight updates but also increases the number of available synaptic weight updates and enhances Spike-Time Dependent Plasticity. Notably, it broadens the switching ratio by two orders, minimizes cycle-to-cycle variability, reduces non-linear factors, and achieves an energy consumption of  ~30 fJ per synaptic event. Implementation of these enhancements is demonstrated through Artificial Neural Network simulations, yielding a learning accuracy of  ~97% on the MNIST hand-written digits dataset. Our findings underscore the significance of defect engineering as a powerful tool in advancing the synaptic functionality of memristors. Memristors based on 2D materials are promising candidates for realizing artificial synapses in next-generation computing. Here, utilizing optimal-power argon plasma treatment, the authors enhance the performance of memristors fabricated from monolayer MoS2, reducing non-linearity and asymmetry in synaptic weight updates and minimizing cycle-to-cycle variability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经形态计算的具有增强记忆和突触功能的缺陷工程单层 MoS2
基于二维过渡金属二钙化物(TMDs)的忆阻器有望在下一代计算中实现人工突触。然而,实际应用面临着一些挑战,例如突触权重更新的高度非线性和不对称性、有限的动态范围以及周期间的可变性。在这里,我们利用最佳功率氩等离子处理技术,显著提高了单层 MoS2 制成的忆阻器的性能矩阵。我们的方法不仅提高了突触权重更新的线性和对称性,还增加了可用突触权重更新的数量,并增强了尖峰时间相关可塑性。值得注意的是,它将开关比扩大了两个数量级,最大限度地减少了周期间的可变性,降低了非线性因素,并使每个突触事件的能耗降至 30 fJ。我们通过人工神经网络模拟演示了这些增强功能的实现,在 MNIST 手写数字数据集上的学习准确率达到了 97%。我们的研究结果强调了缺陷工程的重要性,它是提高忆阻器突触功能的有力工具。基于二维材料的忆阻器是实现下一代计算中人工突触的理想候选材料。在这里,作者利用最佳功率氩等离子体处理技术,提高了单层 MoS2 制成的忆阻器的性能,减少了突触权重更新的非线性和不对称,并最大限度地降低了周期间的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells Nanosized caltrops enable selective capture and directional maneuvering of water droplets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1