Synergistic phosphorus removal mechanism of Tetrasphaera enrichment in a micro-pressure swirl reactor

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-09-16 DOI:10.1038/s41545-024-00389-4
Ge Yu, Hua Kang, Chen Dai, Xinyu Zhu, Shuang Zhong, Fan Wang, Shengshu Ai, Dejun Bian, Donglei Zou
{"title":"Synergistic phosphorus removal mechanism of Tetrasphaera enrichment in a micro-pressure swirl reactor","authors":"Ge Yu, Hua Kang, Chen Dai, Xinyu Zhu, Shuang Zhong, Fan Wang, Shengshu Ai, Dejun Bian, Donglei Zou","doi":"10.1038/s41545-024-00389-4","DOIUrl":null,"url":null,"abstract":"To investigate the effect of Tetrasphaera’s enrichment on phosphorus removal mechanism, three micro-pressure swirl reactor (MPSR) groups were used to experiment on sewage treatment under different SRT (17.2, 50.8, and 68.2 d). Results showed that Tetrasphaera enrichment in the MPSR system was promoted by extending the SRT. After extending the SRT from 17.2 to 68.2 d, the relative abundance of Tetrasphaera increased from 3.1% to 12.1%, and the TP removal efficiency maintained above 92%. The internal circulation results indicated that after extending the SRT, glycogen and polyhydroxybutyrate were co-synthesized during the anaerobic stage, which enhanced the driving force of nutrient removal. Analysis of the microbial composition and functional gene prediction indicated that efficient phosphorus removal can be attributed to the enrichment of Tetrasphaera at long SRT. Overall, the synergistic mechanisms of Tetrasphaera in the organic matter degradation and phosphorus removal processes were integrated into the MPSR.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-11"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00389-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00389-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the effect of Tetrasphaera’s enrichment on phosphorus removal mechanism, three micro-pressure swirl reactor (MPSR) groups were used to experiment on sewage treatment under different SRT (17.2, 50.8, and 68.2 d). Results showed that Tetrasphaera enrichment in the MPSR system was promoted by extending the SRT. After extending the SRT from 17.2 to 68.2 d, the relative abundance of Tetrasphaera increased from 3.1% to 12.1%, and the TP removal efficiency maintained above 92%. The internal circulation results indicated that after extending the SRT, glycogen and polyhydroxybutyrate were co-synthesized during the anaerobic stage, which enhanced the driving force of nutrient removal. Analysis of the microbial composition and functional gene prediction indicated that efficient phosphorus removal can be attributed to the enrichment of Tetrasphaera at long SRT. Overall, the synergistic mechanisms of Tetrasphaera in the organic matter degradation and phosphorus removal processes were integrated into the MPSR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微压漩涡反应器中富集四膜虫的协同除磷机制
为研究富集 Tetrasphaera 对除磷机理的影响,采用三组微压漩涡反应器(MPSR)在不同 SRT(17.2、50.8 和 68.2 d)条件下进行污水处理实验。结果表明,延长 SRT 可促进 MPSR 系统中 Tetrasphaera 的富集。SRT 从 17.2 d 延长到 68.2 d 后,Tetrasphaera 的相对丰度从 3.1% 增加到 12.1%,TP 去除效率保持在 92% 以上。内循环结果表明,在延长SRT后,厌氧阶段糖原和多羟基丁酸共同合成,增强了营养物质去除的动力。对微生物组成和功能基因预测的分析表明,高效除磷可归因于长 SRT 阶段 Tetrasphaera 的富集。总之,Tetrasphaera 在有机物降解和除磷过程中的协同机制已被纳入 MPSR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Biomass-derived multiatom-doped carbon dots for the photocatalytic reduction of Cr(VI) and precipitation of Cr(III) A review of advances & potential of applying nanomaterials for biofilm inhibition Balancing sustainability goals and treatment efficacy for PFAS removal from water Metal–phenolic coating on membrane for ultrafast antibiotics adsorptive removal from water Nanomaterial enhanced photoelectrocatalysis and photocatalysis for chemical oxygen demand sensing a comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1