Permafrost Hydrogeology of Taylor Valley, Antarctica: Insights From Deep Electrical Resistivity Tomography

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-09-16 DOI:10.1029/2023GL106912
Valentina Romano, Federico Fischanger, Gary Wilson, Alessandra Sciarra, Adriano Mazzini, Claudio Mazzoli, Fabio Florindo, Maria Chiara Tartarello, Massimiliano Ascani, Jacob Anderson, Rachel Worthington, Richard Hardie, Bob Dagg, Livio Ruggiero
{"title":"Permafrost Hydrogeology of Taylor Valley, Antarctica: Insights From Deep Electrical Resistivity Tomography","authors":"Valentina Romano,&nbsp;Federico Fischanger,&nbsp;Gary Wilson,&nbsp;Alessandra Sciarra,&nbsp;Adriano Mazzini,&nbsp;Claudio Mazzoli,&nbsp;Fabio Florindo,&nbsp;Maria Chiara Tartarello,&nbsp;Massimiliano Ascani,&nbsp;Jacob Anderson,&nbsp;Rachel Worthington,&nbsp;Richard Hardie,&nbsp;Bob Dagg,&nbsp;Livio Ruggiero","doi":"10.1029/2023GL106912","DOIUrl":null,"url":null,"abstract":"<p>Global warming has prompted globally widespread permafrost thawing, resulting in enhanced greenhouse gas release into the atmosphere. Studies conducted in the Northern Hemisphere reveal an alarming increase in permafrost thawing. However, similar data from Antarctica are scarce. We conducted a 2-D Deep Electrical Resistivity Tomography (DERT) survey in Taylor Valley, Antarctica, to image the distribution of permafrost, its thicknesses, lower boundaries, and hydrogeology. Results show resistive, discontinuous domains that we suggest represent permafrost units. We also find highly conductive layers (5–10 Ω·m), between 300–350 m and 600–650 m below ground level and a shallower (∼50–100 m depth) conductive layer. The combined data set reveals a broad brine system in Taylor Valley, implying multi-tiered groundwater circulation: a shallow, localized system linked with surface water bodies and a separate deeper, regional circulation system. The arrangement of these brines across different levels, coupled with the uneven permafrost distribution, underscores potential interplay between the two systems.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GL106912","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GL106912","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global warming has prompted globally widespread permafrost thawing, resulting in enhanced greenhouse gas release into the atmosphere. Studies conducted in the Northern Hemisphere reveal an alarming increase in permafrost thawing. However, similar data from Antarctica are scarce. We conducted a 2-D Deep Electrical Resistivity Tomography (DERT) survey in Taylor Valley, Antarctica, to image the distribution of permafrost, its thicknesses, lower boundaries, and hydrogeology. Results show resistive, discontinuous domains that we suggest represent permafrost units. We also find highly conductive layers (5–10 Ω·m), between 300–350 m and 600–650 m below ground level and a shallower (∼50–100 m depth) conductive layer. The combined data set reveals a broad brine system in Taylor Valley, implying multi-tiered groundwater circulation: a shallow, localized system linked with surface water bodies and a separate deeper, regional circulation system. The arrangement of these brines across different levels, coupled with the uneven permafrost distribution, underscores potential interplay between the two systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南极泰勒谷的永久冻土水文地质学:深层电阻率层析成像的启示
全球变暖导致了全球范围内大面积的永久冻土融化,从而加剧了向大气中释放温室气体。在北半球进行的研究表明,永久冻土融化的加剧令人震惊。然而,南极洲的类似数据却很少。我们在南极洲泰勒谷进行了一次二维深层电阻率层析成像(DERT)勘测,对永久冻土的分布、厚度、下边界和水文地质进行成像。勘测结果显示了电阻性、不连续的区域,我们认为这些区域代表了永久冻土单元。我们还发现了地面以下 300-350 米和 600-650 米之间的高导电层(5-10 Ω-m)以及较浅的导电层(50-100 米深)。综合数据集揭示了泰勒河谷广泛的盐水系统,意味着地下水的多层循环:与地表水体相连的浅层局部系统和单独的深层区域循环系统。这些盐水在不同层面上的分布,加上不均匀的永久冻土分布,凸显了这两个系统之间潜在的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Investigating Hydrated Silica in Syrtis Major, Mars: Implications for the Longevity of Water–Rock Interaction Internal Variability Dominated the Extreme Cold Wave Over North America in December 2022 Humid, Warm and Treed Ecosystems Show Longer Time-Lag of Vegetation Response to Climate The LCROSS Impact Crater as Seen by ShadowCam and Mini-RF: Size, Context, and Excavation of Copernican Volatiles A Composite Seismic Source Model for the First Major Event During the 2022 Hunga (Tonga) Volcanic Eruption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1