A Flexible, Bioadhesive, and Breathable On-Skin Battery Based on Silk Fibroin Hydrogel for Wearable Electronics

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-15 DOI:10.1002/adfm.202410140
Liuyang Gao, Zhiqi Wang, Yiyao Zen, Yimeng Wang, Qinyi Ren, Zhaozhao Ding, Kun Ni, Jigui Tang, Chenkai Zhang, Yiying Wang, Yafeng Zhou, Jingshu Hui, Qiang Lu, Ruiyuan Liu, Xiaohong Zhang
{"title":"A Flexible, Bioadhesive, and Breathable On-Skin Battery Based on Silk Fibroin Hydrogel for Wearable Electronics","authors":"Liuyang Gao, Zhiqi Wang, Yiyao Zen, Yimeng Wang, Qinyi Ren, Zhaozhao Ding, Kun Ni, Jigui Tang, Chenkai Zhang, Yiying Wang, Yafeng Zhou, Jingshu Hui, Qiang Lu, Ruiyuan Liu, Xiaohong Zhang","doi":"10.1002/adfm.202410140","DOIUrl":null,"url":null,"abstract":"On-skin electronics rely on flexible power sources for stable operation and comfortable wearing. However, the current materials and device designs of on-skin batteries for human-interface electronic systems suffer from inadequate adhesion and impermeability. In this work, a general design of a bioadhesive and breathable on-skin flexible metal-air battery is presented. By laterally loading a conducting polymer-based cathode and a zinc anode onto a biocompatible silk fibroin ionic hydrogel electrolyte film, the battery exhibits good epidermal adhesions (shear strength exceeds 20 kPa and interface toughness exceeds 150 J m<sup>−2</sup>) and excellent sweat breathability (3 times greater than commercial 3 M breathable dressing). A singular battery can generate an open circuit voltage of up to 1.4 V and a power density of 72 µW cm<sup>−2</sup>. It shows stable adhesion to the skin for five days, while simultaneously preserving epidermal respiratory function and facilitating natural skin movement. On-skin integration of the battery array can be easily conducted to increase the electrical output. This battery design enhances the usability, comfort, and safety of wearable electronics, enabling new applications in healthcare, fitness tracking, and beyond.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410140","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On-skin electronics rely on flexible power sources for stable operation and comfortable wearing. However, the current materials and device designs of on-skin batteries for human-interface electronic systems suffer from inadequate adhesion and impermeability. In this work, a general design of a bioadhesive and breathable on-skin flexible metal-air battery is presented. By laterally loading a conducting polymer-based cathode and a zinc anode onto a biocompatible silk fibroin ionic hydrogel electrolyte film, the battery exhibits good epidermal adhesions (shear strength exceeds 20 kPa and interface toughness exceeds 150 J m−2) and excellent sweat breathability (3 times greater than commercial 3 M breathable dressing). A singular battery can generate an open circuit voltage of up to 1.4 V and a power density of 72 µW cm−2. It shows stable adhesion to the skin for five days, while simultaneously preserving epidermal respiratory function and facilitating natural skin movement. On-skin integration of the battery array can be easily conducted to increase the electrical output. This battery design enhances the usability, comfort, and safety of wearable electronics, enabling new applications in healthcare, fitness tracking, and beyond.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蚕丝纤维素水凝胶的柔性、生物粘附性和透气性皮肤上电池,用于可穿戴电子设备
皮肤电子设备依靠灵活的电源实现稳定运行和舒适佩戴。然而,目前用于人机界面电子系统的皮肤电池的材料和设备设计存在粘附性和不透气性不足的问题。本研究提出了一种生物粘附性和透气性皮肤柔性金属空气电池的总体设计。通过在生物相容性蚕丝纤维离子水凝胶电解质薄膜上横向装载导电聚合物阴极和锌阳极,该电池表现出良好的表皮粘附性(剪切强度超过 20 kPa,界面韧性超过 150 J m-2)和出色的汗液透气性(比商用 3 M 透气敷料高出 3 倍)。单个电池可产生高达 1.4 V 的开路电压和 72 µW cm-2 的功率密度。它能在皮肤上稳定附着五天,同时保持表皮呼吸功能,促进皮肤自然运动。在皮肤上集成电池阵列可轻松提高电力输出。这种电池设计提高了可穿戴电子设备的可用性、舒适性和安全性,使医疗保健、健身追踪等领域的新应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Tailoring the Charge Transfer-Driven Oxidation in van der Waals Ferroelectric NbOI2 Through Hetero-Interface Engineering Highly Polarization-Sensitive Solar-Blind Ultraviolet Photodetection Based on 1D Rb2CuCl3 Microwires Promoting Layered Oxide Cathodes Based on Structural Reconstruction for Sodium-Ion Batteries: Reversible Phase Transition, Stable Interface Regulation, and Multifunctional Intergrowth Structure Investigation on the Necessity of Low Rates Activation toward Lithium-Sulfur Batteries Prefer-Oriented Ag2Se Crystal for High-Performance Thermoelectric Cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1