Interpreting cis-regulatory interactions from large-scale deep neural networks

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY Nature genetics Pub Date : 2024-09-16 DOI:10.1038/s41588-024-01923-3
Shushan Toneyan, Peter K. Koo
{"title":"Interpreting cis-regulatory interactions from large-scale deep neural networks","authors":"Shushan Toneyan, Peter K. Koo","doi":"10.1038/s41588-024-01923-3","DOIUrl":null,"url":null,"abstract":"<p>The rise of large-scale, sequence-based deep neural networks (DNNs) for predicting gene expression has introduced challenges in their evaluation and interpretation. Current evaluations align DNN predictions with orthogonal experimental data, providing insights into generalization but offering limited insights into their decision-making process. Existing model explainability tools focus mainly on motif analysis, which becomes complex when interpreting longer sequences. Here we present <i>cis</i>-regulatory element model explanations (CREME), an in silico perturbation toolkit that interprets the rules of gene regulation learned by a genomic DNN. Applying CREME to Enformer, a state-of-the-art DNN, we identify <i>cis</i>-regulatory elements that enhance or silence gene expression and characterize their complex interactions. CREME can provide interpretations across multiple scales of genomic organization, from <i>cis</i>-regulatory elements to fine-mapped functional sequence elements within them, offering high-resolution insights into the regulatory architecture of the genome. CREME provides a powerful toolkit for translating the predictions of genomic DNNs into mechanistic insights of gene regulation.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":null,"pages":null},"PeriodicalIF":31.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-01923-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of large-scale, sequence-based deep neural networks (DNNs) for predicting gene expression has introduced challenges in their evaluation and interpretation. Current evaluations align DNN predictions with orthogonal experimental data, providing insights into generalization but offering limited insights into their decision-making process. Existing model explainability tools focus mainly on motif analysis, which becomes complex when interpreting longer sequences. Here we present cis-regulatory element model explanations (CREME), an in silico perturbation toolkit that interprets the rules of gene regulation learned by a genomic DNN. Applying CREME to Enformer, a state-of-the-art DNN, we identify cis-regulatory elements that enhance or silence gene expression and characterize their complex interactions. CREME can provide interpretations across multiple scales of genomic organization, from cis-regulatory elements to fine-mapped functional sequence elements within them, offering high-resolution insights into the regulatory architecture of the genome. CREME provides a powerful toolkit for translating the predictions of genomic DNNs into mechanistic insights of gene regulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大规模深度神经网络解读顺式调控相互作用
用于预测基因表达的大规模、基于序列的深度神经网络(DNN)的兴起,为其评估和解释带来了挑战。目前的评估方法是将 DNN 预测与正交实验数据进行比对,从而深入了解 DNN 的泛化情况,但对 DNN 的决策过程了解有限。现有的模型可解释性工具主要侧重于主题分析,而这在解释较长序列时会变得复杂。在这里,我们提出了顺式调控元件模型解释(CREME),这是一个硅学扰动工具包,可以解释由基因组 DNN 学习到的基因调控规则。我们将 CREME 应用于 Enformer(一种最先进的 DNN),找出了增强或抑制基因表达的顺式调控元件,并描述了它们之间复杂的相互作用。CREME 可以提供从顺式调控元件到其中精细映射的功能序列元件的多尺度基因组组织解释,从而提供对基因组调控结构的高分辨率洞察。CREME 提供了一个功能强大的工具包,可将基因组 DNN 的预测转化为基因调控的机理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
期刊最新文献
Chemical restriction of PU.1 genomic binding sites activates alternate gene networks Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study Spatial transcriptomic analysis of primary and metastatic pancreatic cancers highlights tumor microenvironmental heterogeneity Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity A model for a dual function of N6-methyladenosine in R-loop regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1