首页 > 最新文献

Nature genetics最新文献

英文 中文
Genetic risk for delirium 精神错乱的遗传风险。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-13 DOI: 10.1038/s41588-025-02495-6
Kyle Vogan
{"title":"Genetic risk for delirium","authors":"Kyle Vogan","doi":"10.1038/s41588-025-02495-6","DOIUrl":"10.1038/s41588-025-02495-6","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"13-13"},"PeriodicalIF":29.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145966464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The predicament of heritable confounders. 遗传混杂的困境。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-13 DOI: 10.1038/s41588-025-02465-y
Na Cai, Andy Dahl, Richard Border, Aditya Gorla, Jolien Rietkerk, Joel Mefford, Noah Zaitlen, Morten Dybdahl Krebs, Andrew J Schork, Kenneth Kendler, Jonathan Flint

Identifying significant associations between genetic loci and psychiatric disorders is dependent on very large sample sizes. Methods for diagnosing diseases on this scale, such as the use of self-assessment questionnaires and data from electronic health records, incorporate heritable variation unrelated to the disease of interest into the diagnosis. Consequently, genetic mapping will identify loci unrelated to the target disease while missing some that are related, and genetic correlations cannot be used to infer the genetic relationships between diseases and between cohorts. Furthermore, shared biases between different disorders appear as shared etiology. As sample sizes grow, such confounders propagate, and findings based on their presence are replicated and extended. Here, we draw attention to the problem, make suggestions for flagging affected cohorts, and discuss future data collection and machine learning approaches to mitigate the effects of heritable confounders in psychiatric disorders.

确定基因位点和精神疾病之间的显著关联依赖于非常大的样本量。在这一范围内诊断疾病的方法,如使用自我评估问卷和电子健康记录数据,将与感兴趣的疾病无关的遗传变异纳入诊断。因此,遗传作图将确定与目标疾病无关的位点,而遗漏了一些相关的位点,并且遗传相关性不能用于推断疾病之间和群体之间的遗传关系。此外,不同疾病之间的共同偏见表现为共同的病因。随着样本量的增加,这类混杂因素会不断传播,基于它们的发现会被复制和扩展。在这里,我们提请注意这个问题,提出了标记受影响队列的建议,并讨论了未来的数据收集和机器学习方法,以减轻遗传混杂因素对精神疾病的影响。
{"title":"The predicament of heritable confounders.","authors":"Na Cai, Andy Dahl, Richard Border, Aditya Gorla, Jolien Rietkerk, Joel Mefford, Noah Zaitlen, Morten Dybdahl Krebs, Andrew J Schork, Kenneth Kendler, Jonathan Flint","doi":"10.1038/s41588-025-02465-y","DOIUrl":"https://doi.org/10.1038/s41588-025-02465-y","url":null,"abstract":"<p><p>Identifying significant associations between genetic loci and psychiatric disorders is dependent on very large sample sizes. Methods for diagnosing diseases on this scale, such as the use of self-assessment questionnaires and data from electronic health records, incorporate heritable variation unrelated to the disease of interest into the diagnosis. Consequently, genetic mapping will identify loci unrelated to the target disease while missing some that are related, and genetic correlations cannot be used to infer the genetic relationships between diseases and between cohorts. Furthermore, shared biases between different disorders appear as shared etiology. As sample sizes grow, such confounders propagate, and findings based on their presence are replicated and extended. Here, we draw attention to the problem, make suggestions for flagging affected cohorts, and discuss future data collection and machine learning approaches to mitigate the effects of heritable confounders in psychiatric disorders.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":" ","pages":""},"PeriodicalIF":29.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145966443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dating the mitochondrion’s arrival 确定线粒体到来的时间。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-13 DOI: 10.1038/s41588-025-02493-8
Hui Hua
{"title":"Dating the mitochondrion’s arrival","authors":"Hui Hua","doi":"10.1038/s41588-025-02493-8","DOIUrl":"10.1038/s41588-025-02493-8","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"13-13"},"PeriodicalIF":29.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145966419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic overlap across 14 psychiatric disorders 14种精神疾病的基因重叠。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-13 DOI: 10.1038/s41588-025-02494-7
Wei Li
{"title":"Genetic overlap across 14 psychiatric disorders","authors":"Wei Li","doi":"10.1038/s41588-025-02494-7","DOIUrl":"10.1038/s41588-025-02494-7","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"13-13"},"PeriodicalIF":29.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting in vivo chromatin states 预测体内染色质状态。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-13 DOI: 10.1038/s41588-025-02492-9
Petra Gross
{"title":"Predicting in vivo chromatin states","authors":"Petra Gross","doi":"10.1038/s41588-025-02492-9","DOIUrl":"10.1038/s41588-025-02492-9","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"13-13"},"PeriodicalIF":29.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145966486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Journeys of hope. 希望之旅。
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-12 DOI: 10.1038/s41588-025-02466-x
Yvonne Walburga Joko Fru
{"title":"Journeys of hope.","authors":"Yvonne Walburga Joko Fru","doi":"10.1038/s41588-025-02466-x","DOIUrl":"https://doi.org/10.1038/s41588-025-02466-x","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":" ","pages":""},"PeriodicalIF":29.0,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145959647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressive pangenomics using mutation-annotated networks 使用突变注释网络的压缩泛基因组学
IF 30.8 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-12 DOI: 10.1038/s41588-025-02478-7
Sumit Walia, Harsh Motwani, Yu-Hsiang Tseng, Kyle Smith, Russell Corbett-Detig, Yatish Turakhia
Pangenomics is an emerging field that uses collections of genomes, rather than a single reference, to reduce bias and capture intra-species diversity. However, existing pangenomic data formats face challenges in scaling to millions of genomes and primarily emphasize variation, often neglecting the underlying mutational events and evolutionary relationships. This work introduces Pangenome Mutation-Annotated Network (PanMAN), a lossless pangenome representation that achieves compression ratios ranging from 3.5–1,391× in file sizes compared to existing variation-preserving formats, with performance generally improving on larger datasets. In addition to compression, PanMAN increases representational capacity by encoding detailed mutational and evolutionary histories inferred across genomes, thereby enabling new biological insights. Using PanMAN, a comprehensive SARS-CoV-2 pangenome was constructed from 8 million publicly available sequences, requiring only 366 MB of disk space. We also present ‘panmanUtils’, a toolkit that supports common analyses and ensures interoperability with existing software. PanMAN is poised to greatly improve the scale, speed, resolution and scope of pangenomic analysis and data sharing.
泛基因组学是一个新兴领域,它使用基因组集合而不是单一参考来减少偏见和捕获物种内多样性。然而,现有的全基因组数据格式在扩展到数百万个基因组时面临挑战,并且主要强调变异,往往忽略了潜在的突变事件和进化关系。这项工作引入了泛基因组突变注释网络(PanMAN),这是一种无损的泛基因组表示,与现有的保存变异的格式相比,它在文件大小上实现了3.5 - 1391倍的压缩比,在更大的数据集上性能普遍提高。除了压缩之外,PanMAN还通过编码跨基因组推断的详细突变和进化历史来增加表征能力,从而实现新的生物学见解。使用PanMAN,从800万个公开的序列中构建了一个全面的SARS-CoV-2泛基因组,仅需要366 MB的磁盘空间。我们还介绍了“panmanUtils”,这是一个支持通用分析并确保与现有软件互操作性的工具包。PanMAN将大大提高泛基因组分析和数据共享的规模、速度、分辨率和范围。
{"title":"Compressive pangenomics using mutation-annotated networks","authors":"Sumit Walia, Harsh Motwani, Yu-Hsiang Tseng, Kyle Smith, Russell Corbett-Detig, Yatish Turakhia","doi":"10.1038/s41588-025-02478-7","DOIUrl":"https://doi.org/10.1038/s41588-025-02478-7","url":null,"abstract":"Pangenomics is an emerging field that uses collections of genomes, rather than a single reference, to reduce bias and capture intra-species diversity. However, existing pangenomic data formats face challenges in scaling to millions of genomes and primarily emphasize variation, often neglecting the underlying mutational events and evolutionary relationships. This work introduces Pangenome Mutation-Annotated Network (PanMAN), a lossless pangenome representation that achieves compression ratios ranging from 3.5–1,391× in file sizes compared to existing variation-preserving formats, with performance generally improving on larger datasets. In addition to compression, PanMAN increases representational capacity by encoding detailed mutational and evolutionary histories inferred across genomes, thereby enabling new biological insights. Using PanMAN, a comprehensive SARS-CoV-2 pangenome was constructed from 8 million publicly available sequences, requiring only 366 MB of disk space. We also present ‘panmanUtils’, a toolkit that supports common analyses and ensures interoperability with existing software. PanMAN is poised to greatly improve the scale, speed, resolution and scope of pangenomic analysis and data sharing.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"250 1","pages":""},"PeriodicalIF":30.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De novo and inherited dominant variants in U4 and U6 snRNA genes cause retinitis pigmentosa U4和U6 snRNA基因的新生和遗传显性变异可引起视网膜色素变性
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-09 DOI: 10.1038/s41588-025-02451-4
Mathieu Quinodoz, Kim Rodenburg, Zuzana Cvackova, Karolina Kaminska, Suzanne E. de Bruijn, Ana Belén Iglesias-Romero, Erica G. M. Boonen, Mukhtar Ullah, Nick Zomer, Marc Folcher, Jacques Bijon, Lara K. Holtes, Stephen H. Tsang, Zelia Corradi, K. Bailey Freund, Stefanida Shliaga, Daan M. Panneman, Rebekkah J. Hitti-Malin, Manir Ali, Ala’a AlTalbishi, Sten Andréasson, Georg Ansari, Gavin Arno, Galuh D. N. Astuti, Carmen Ayuso, Radha Ayyagari, Sandro Banfi, Eyal Banin, Tahsin Stefan Barakat, Mirella T. S. Barboni, Miriam Bauwens, Tamar Ben-Yosef, Virginie Bernard, David G. Birch, Pooja Biswas, Fiona Blanco-Kelly, Beatrice Bocquet, Camiel J. F. Boon, Kari Branham, Dominique Bremond-Gignac, Alexis Ceecee Britten-Jones, Kinga M. Bujakowska, Cyril Burin des Roziers, Elizabeth L. Cadena, Giacomo Calzetti, Francesca Cancellieri, Luca Cattaneo, Naomi Chadderton, Peter Charbel Issa, Luísa Coutinho-Santos, Stephen P. Daiger, Elfride De Baere, Marieke De Bruyne, Berta de la Cerda, John N. De Roach, Julie De Zaeytijd, Ronny Derks, Claire-Marie Dhaenens, Lubica Dudakova, Jacque L. Duncan, G. Jane Farrar, Nicolas Feltgen, Beau J. Fenner, Lidia Fernández-Caballero, Juliana M. Ferraz Sallum, Simone Gana, Alejandro Garanto, Jessica C. Gardner, Christian Gilissen, Roser Gonzàlez-Duarte, Kensuke Goto, Sam Griffiths-Jones, Tobias B. Haack, Lonneke Haer-Wigman, Alison J. Hardcastle, Takaaki Hayashi, Elise Héon, Lies H. Hoefsloot, Alexander Hoischen, Josephine P. Holtan, Carel B. Hoyng, Manuel Benjamin B. Ibanez IV, Chris F. Inglehearn, Takeshi Iwata, Brynjar O. Jensson, Kaylie Jones, Vasiliki Kalatzis, Smaragda Kamakari, Marianthi Karali, Ulrich Kellner, Caroline C. W. Klaver, Krisztina Knézy, Robert K. Koenekoop, Susanne Kohl, Taro Kominami, Laura Kühlewein, Tina M. Lamey, Rina Leibu, Bart P. Leroy, Petra Liskova, Irma Lopez, Victor R. de J. López-Rodríguez, Quinten Mahieu, Omar A. Mahroo, Gaël Manes, Luke Mansard, M. Pilar Martín-Gutiérrez, Nelson Martins, Laura Mauring, Martin McKibbin, Terri L. McLaren, Isabelle Meunier, Michel Michaelides, José M. Millán, Kei Mizobuchi, Rajarshi Mukherjee, Zoltán Zsolt Nagy, Kornelia Neveling, Monika Ołdak, Michiel Oorsprong, Yang Pan, Anastasia Papachristou, Antonio Percesepe, Maximilian Pfau, Eric A. Pierce, Emily Place, Raj Ramesar, Francis Ramond, Florence Andrée Rasquin, Gillian I. Rice, Lisa Roberts, María Rodríguez-Hidalgo, Javier Ruiz-Ederra, Ataf H. Sabir, Ai Fujita Sajiki, Ana Isabel Sánchez-Barbero, Asodu Sandeep Sarma, Riccardo Sangermano, Cristina M. Santos, Margherita Scarpato, Hendrik P. N. Scholl, Dror Sharon, Sabrina G. Signorini, Francesca Simonelli, Ana Berta Sousa, Maria Stefaniotou, Kari Stefansson, Katarina Stingl, Akiko Suga, Patrick Sulem, Lori S. Sullivan, Viktória Szabó, Jacek P. Szaflik, Gita Taurina, Alberta A. H. J. Thiadens, Carmel Toomes, Viet H. Tran, Miltiadis K. Tsilimbaris, Pavlina Tsoka, Veronika Vaclavik, Marie Vajter, Sandra Valeina, Enza Maria Valente, Casey Valentine, Rebeca Valero, Sophie Valleix, Joseph van Aerschot, L. Ingeborgh van den Born, Mattias Van Heetvelde, Virginie J. M. Verhoeven, Andrea L. Vincent, Andrew R. Webster, Laura Whelan, Bernd Wissinger, Georgia G. Yioti, Kazutoshi Yoshitake, Juan C. Zenteno, Roberta Zeuli, Theresia Zuleger, Chaim Landau, Allan I. Jacob, Siying Lin, Frans P. M. Cremers, Winston Lee, Jamie M. Ellingford, David Stanek, Susanne Roosing, Carlo Rivolta
Small nuclear RNAs (snRNAs) combine with specific proteins to generate small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. U4 snRNA forms a duplex with U6 and, together with U5, contributes to the tri-snRNP spliceosomal complex. Variants in RNU4-2, which encodes U4, have recently been implicated in neurodevelopmental disorders. Here we show that heterozygous inherited and de novo variants in RNU4-2 and in four RNU6 paralogs (RNU6-1, RNU6-2, RNU6-8 and RNU6-9), which encode U6, recur in individuals with nonsyndromic retinitis pigmentosa (RP), a genetic disorder causing progressive blindness. These variants cluster within the three-way junction of the U4/U6 duplex, a site that interacts with tri-snRNP splicing factors also known to cause RP (PRPF3, PRPF8, PRPF31), and seem to affect snRNP biogenesis. Based on our cohort, deleterious variants in RNU4-2 and RNU6 paralogs may explain up to ~1.4% of otherwise undiagnosed RP cases. This study highlights the contribution of noncoding RNA genes to Mendelian disease and reveals pleiotropy in RNU4-2, where distinct variants underlie neurodevelopmental disorder and retinal degeneration. De novo and inherited dominant variants in genes encoding U4 and U6 small nuclear RNAs are identified in individuals with retinitis pigmentosa. The variants cluster at nucleotide positions distinct from those implicated in neurodevelopmental disorders.
小核rna (snrna)与特定蛋白质结合产生小核核糖核蛋白(snRNPs),这是剪接体的基础。U4 snRNA与U6形成双工,并与U5一起构成tri-snRNP剪接体复合体。编码U4的RNU4-2的变异最近被认为与神经发育障碍有关。在这里,我们发现编码U6的RNU4-2和四个RNU6类似基因(RNU6-1、RNU6-2、RNU6-8和RNU6-9)的杂合遗传和新生变异在非综合征性视网膜色素变性(RP)患者中复发,RP是一种导致进行性失明的遗传性疾病。这些变异聚集在U4/U6双工的三向交界处,这是一个与tri-snRNP剪接因子相互作用的位点,也已知会导致RP (PRPF3, PRPF8, PRPF31),并且似乎影响snRNP的生物发生。基于我们的队列,RNU4-2和RNU6类似物的有害变异可能解释了高达1.4%的未确诊的RP病例。这项研究强调了非编码RNA基因对孟德尔病的贡献,并揭示了RNU4-2的多向性,其中不同的变异是神经发育障碍和视网膜变性的基础。在视网膜色素变性患者中发现了编码U4和U6小核rna的基因的新生和遗传显性变异。变异聚集在核苷酸的位置不同于那些涉及神经发育障碍。
{"title":"De novo and inherited dominant variants in U4 and U6 snRNA genes cause retinitis pigmentosa","authors":"Mathieu Quinodoz,&nbsp;Kim Rodenburg,&nbsp;Zuzana Cvackova,&nbsp;Karolina Kaminska,&nbsp;Suzanne E. de Bruijn,&nbsp;Ana Belén Iglesias-Romero,&nbsp;Erica G. M. Boonen,&nbsp;Mukhtar Ullah,&nbsp;Nick Zomer,&nbsp;Marc Folcher,&nbsp;Jacques Bijon,&nbsp;Lara K. Holtes,&nbsp;Stephen H. Tsang,&nbsp;Zelia Corradi,&nbsp;K. Bailey Freund,&nbsp;Stefanida Shliaga,&nbsp;Daan M. Panneman,&nbsp;Rebekkah J. Hitti-Malin,&nbsp;Manir Ali,&nbsp;Ala’a AlTalbishi,&nbsp;Sten Andréasson,&nbsp;Georg Ansari,&nbsp;Gavin Arno,&nbsp;Galuh D. N. Astuti,&nbsp;Carmen Ayuso,&nbsp;Radha Ayyagari,&nbsp;Sandro Banfi,&nbsp;Eyal Banin,&nbsp;Tahsin Stefan Barakat,&nbsp;Mirella T. S. Barboni,&nbsp;Miriam Bauwens,&nbsp;Tamar Ben-Yosef,&nbsp;Virginie Bernard,&nbsp;David G. Birch,&nbsp;Pooja Biswas,&nbsp;Fiona Blanco-Kelly,&nbsp;Beatrice Bocquet,&nbsp;Camiel J. F. Boon,&nbsp;Kari Branham,&nbsp;Dominique Bremond-Gignac,&nbsp;Alexis Ceecee Britten-Jones,&nbsp;Kinga M. Bujakowska,&nbsp;Cyril Burin des Roziers,&nbsp;Elizabeth L. Cadena,&nbsp;Giacomo Calzetti,&nbsp;Francesca Cancellieri,&nbsp;Luca Cattaneo,&nbsp;Naomi Chadderton,&nbsp;Peter Charbel Issa,&nbsp;Luísa Coutinho-Santos,&nbsp;Stephen P. Daiger,&nbsp;Elfride De Baere,&nbsp;Marieke De Bruyne,&nbsp;Berta de la Cerda,&nbsp;John N. De Roach,&nbsp;Julie De Zaeytijd,&nbsp;Ronny Derks,&nbsp;Claire-Marie Dhaenens,&nbsp;Lubica Dudakova,&nbsp;Jacque L. Duncan,&nbsp;G. Jane Farrar,&nbsp;Nicolas Feltgen,&nbsp;Beau J. Fenner,&nbsp;Lidia Fernández-Caballero,&nbsp;Juliana M. Ferraz Sallum,&nbsp;Simone Gana,&nbsp;Alejandro Garanto,&nbsp;Jessica C. Gardner,&nbsp;Christian Gilissen,&nbsp;Roser Gonzàlez-Duarte,&nbsp;Kensuke Goto,&nbsp;Sam Griffiths-Jones,&nbsp;Tobias B. Haack,&nbsp;Lonneke Haer-Wigman,&nbsp;Alison J. Hardcastle,&nbsp;Takaaki Hayashi,&nbsp;Elise Héon,&nbsp;Lies H. Hoefsloot,&nbsp;Alexander Hoischen,&nbsp;Josephine P. Holtan,&nbsp;Carel B. Hoyng,&nbsp;Manuel Benjamin B. Ibanez IV,&nbsp;Chris F. Inglehearn,&nbsp;Takeshi Iwata,&nbsp;Brynjar O. Jensson,&nbsp;Kaylie Jones,&nbsp;Vasiliki Kalatzis,&nbsp;Smaragda Kamakari,&nbsp;Marianthi Karali,&nbsp;Ulrich Kellner,&nbsp;Caroline C. W. Klaver,&nbsp;Krisztina Knézy,&nbsp;Robert K. Koenekoop,&nbsp;Susanne Kohl,&nbsp;Taro Kominami,&nbsp;Laura Kühlewein,&nbsp;Tina M. Lamey,&nbsp;Rina Leibu,&nbsp;Bart P. Leroy,&nbsp;Petra Liskova,&nbsp;Irma Lopez,&nbsp;Victor R. de J. López-Rodríguez,&nbsp;Quinten Mahieu,&nbsp;Omar A. Mahroo,&nbsp;Gaël Manes,&nbsp;Luke Mansard,&nbsp;M. Pilar Martín-Gutiérrez,&nbsp;Nelson Martins,&nbsp;Laura Mauring,&nbsp;Martin McKibbin,&nbsp;Terri L. McLaren,&nbsp;Isabelle Meunier,&nbsp;Michel Michaelides,&nbsp;José M. Millán,&nbsp;Kei Mizobuchi,&nbsp;Rajarshi Mukherjee,&nbsp;Zoltán Zsolt Nagy,&nbsp;Kornelia Neveling,&nbsp;Monika Ołdak,&nbsp;Michiel Oorsprong,&nbsp;Yang Pan,&nbsp;Anastasia Papachristou,&nbsp;Antonio Percesepe,&nbsp;Maximilian Pfau,&nbsp;Eric A. Pierce,&nbsp;Emily Place,&nbsp;Raj Ramesar,&nbsp;Francis Ramond,&nbsp;Florence Andrée Rasquin,&nbsp;Gillian I. Rice,&nbsp;Lisa Roberts,&nbsp;María Rodríguez-Hidalgo,&nbsp;Javier Ruiz-Ederra,&nbsp;Ataf H. Sabir,&nbsp;Ai Fujita Sajiki,&nbsp;Ana Isabel Sánchez-Barbero,&nbsp;Asodu Sandeep Sarma,&nbsp;Riccardo Sangermano,&nbsp;Cristina M. Santos,&nbsp;Margherita Scarpato,&nbsp;Hendrik P. N. Scholl,&nbsp;Dror Sharon,&nbsp;Sabrina G. Signorini,&nbsp;Francesca Simonelli,&nbsp;Ana Berta Sousa,&nbsp;Maria Stefaniotou,&nbsp;Kari Stefansson,&nbsp;Katarina Stingl,&nbsp;Akiko Suga,&nbsp;Patrick Sulem,&nbsp;Lori S. Sullivan,&nbsp;Viktória Szabó,&nbsp;Jacek P. Szaflik,&nbsp;Gita Taurina,&nbsp;Alberta A. H. J. Thiadens,&nbsp;Carmel Toomes,&nbsp;Viet H. Tran,&nbsp;Miltiadis K. Tsilimbaris,&nbsp;Pavlina Tsoka,&nbsp;Veronika Vaclavik,&nbsp;Marie Vajter,&nbsp;Sandra Valeina,&nbsp;Enza Maria Valente,&nbsp;Casey Valentine,&nbsp;Rebeca Valero,&nbsp;Sophie Valleix,&nbsp;Joseph van Aerschot,&nbsp;L. Ingeborgh van den Born,&nbsp;Mattias Van Heetvelde,&nbsp;Virginie J. M. Verhoeven,&nbsp;Andrea L. Vincent,&nbsp;Andrew R. Webster,&nbsp;Laura Whelan,&nbsp;Bernd Wissinger,&nbsp;Georgia G. Yioti,&nbsp;Kazutoshi Yoshitake,&nbsp;Juan C. Zenteno,&nbsp;Roberta Zeuli,&nbsp;Theresia Zuleger,&nbsp;Chaim Landau,&nbsp;Allan I. Jacob,&nbsp;Siying Lin,&nbsp;Frans P. M. Cremers,&nbsp;Winston Lee,&nbsp;Jamie M. Ellingford,&nbsp;David Stanek,&nbsp;Susanne Roosing,&nbsp;Carlo Rivolta","doi":"10.1038/s41588-025-02451-4","DOIUrl":"10.1038/s41588-025-02451-4","url":null,"abstract":"Small nuclear RNAs (snRNAs) combine with specific proteins to generate small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. U4 snRNA forms a duplex with U6 and, together with U5, contributes to the tri-snRNP spliceosomal complex. Variants in RNU4-2, which encodes U4, have recently been implicated in neurodevelopmental disorders. Here we show that heterozygous inherited and de novo variants in RNU4-2 and in four RNU6 paralogs (RNU6-1, RNU6-2, RNU6-8 and RNU6-9), which encode U6, recur in individuals with nonsyndromic retinitis pigmentosa (RP), a genetic disorder causing progressive blindness. These variants cluster within the three-way junction of the U4/U6 duplex, a site that interacts with tri-snRNP splicing factors also known to cause RP (PRPF3, PRPF8, PRPF31), and seem to affect snRNP biogenesis. Based on our cohort, deleterious variants in RNU4-2 and RNU6 paralogs may explain up to ~1.4% of otherwise undiagnosed RP cases. This study highlights the contribution of noncoding RNA genes to Mendelian disease and reveals pleiotropy in RNU4-2, where distinct variants underlie neurodevelopmental disorder and retinal degeneration. De novo and inherited dominant variants in genes encoding U4 and U6 small nuclear RNAs are identified in individuals with retinitis pigmentosa. The variants cluster at nucleotide positions distinct from those implicated in neurodevelopmental disorders.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"169-179"},"PeriodicalIF":29.0,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02451-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking the plasma proteome to genetics in individuals from continental Africa provides insights into type 2 diabetes pathogenesis 将血浆蛋白质组与非洲大陆个体的遗传学联系起来,为2型糖尿病的发病机制提供了新的见解
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-08 DOI: 10.1038/s41588-025-02421-w
Opeyemi Soremekun, Young-Chan Park, Mauro Tutino, Ana Luiza Arruda, Allan Kalungi, N. William Rayner, Moffat Nyirenda, Segun Fatumo, Eleftheria Zeggini
Individuals of African ancestry remain largely underrepresented in genetic and proteomic studies. Here we measure the levels of 2,873 proteins in plasma samples from 163 individuals with type 2 diabetes (T2D) or prediabetes and 362 normoglycemic controls from the Ugandan population. We identify 88 differentially expressed proteins between the two groups. We link genome-wide data to protein expression levels and construct a protein quantitative trait locus (pQTL) map for this population. We identify 399 independent associations with 346 (86.7%) cis-pQTLs and 53 (13.3%) trans-pQTLs; 16.7% of the cis-pQTLs and all of the trans-pQTLs have not been previously reported in individuals of African ancestry. Of these, 37 pQTLs have not been previously reported in any population. We find evidence for colocalization between a pQTL and T2D genetic risk. Our findings reveal proteins causally implicated in the pathogenesis of T2D, which may be leveraged for personalized medicine tailored to individuals of African ancestry. This study uses a high-dimensional proteomics panel to explore protein-level genetic associations with type 2 diabetes in a Ugandan cohort.
在遗传和蛋白质组学研究中,非洲血统的个体仍然在很大程度上缺乏代表性。在这里,我们测量了163名2型糖尿病(T2D)或前驱糖尿病患者和362名血糖控制正常的乌干达人群的血浆样本中2873种蛋白质的水平。我们鉴定出两组之间有88个差异表达蛋白。我们将全基因组数据与蛋白质表达水平联系起来,并构建了该群体的蛋白质数量性状位点(pQTL)图谱。我们鉴定出399个独立关联,346个(86.7%)顺式pqtl和53个(13.3%)反式pqtl;16.7%的顺式pqtl和所有的反式pqtl以前未在非洲血统个体中报道过。其中,37个pqtl以前未在任何人群中报道过。我们发现了pQTL和T2D遗传风险共定位的证据。我们的研究结果揭示了与T2D发病机制有因果关系的蛋白质,这可能有助于为非洲血统的个体量身定制个性化医疗。
{"title":"Linking the plasma proteome to genetics in individuals from continental Africa provides insights into type 2 diabetes pathogenesis","authors":"Opeyemi Soremekun,&nbsp;Young-Chan Park,&nbsp;Mauro Tutino,&nbsp;Ana Luiza Arruda,&nbsp;Allan Kalungi,&nbsp;N. William Rayner,&nbsp;Moffat Nyirenda,&nbsp;Segun Fatumo,&nbsp;Eleftheria Zeggini","doi":"10.1038/s41588-025-02421-w","DOIUrl":"10.1038/s41588-025-02421-w","url":null,"abstract":"Individuals of African ancestry remain largely underrepresented in genetic and proteomic studies. Here we measure the levels of 2,873 proteins in plasma samples from 163 individuals with type 2 diabetes (T2D) or prediabetes and 362 normoglycemic controls from the Ugandan population. We identify 88 differentially expressed proteins between the two groups. We link genome-wide data to protein expression levels and construct a protein quantitative trait locus (pQTL) map for this population. We identify 399 independent associations with 346 (86.7%) cis-pQTLs and 53 (13.3%) trans-pQTLs; 16.7% of the cis-pQTLs and all of the trans-pQTLs have not been previously reported in individuals of African ancestry. Of these, 37 pQTLs have not been previously reported in any population. We find evidence for colocalization between a pQTL and T2D genetic risk. Our findings reveal proteins causally implicated in the pathogenesis of T2D, which may be leveraged for personalized medicine tailored to individuals of African ancestry. This study uses a high-dimensional proteomics panel to explore protein-level genetic associations with type 2 diabetes in a Ugandan cohort.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"39-46"},"PeriodicalIF":29.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02421-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein–protein interactions shape trans-regulatory impact of genetic variation on protein expression and complex traits 蛋白质-蛋白质相互作用形成基因变异对蛋白质表达和复杂性状的反调控影响
IF 29 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2026-01-07 DOI: 10.1038/s41588-025-02449-y
Jinghui Li, Yang I. Li, Xuanyao Liu
Most genetic variants influence complex traits by affecting gene regulation. Yet, despite comprehensive catalogs of molecular quantitative trait loci (QTLs), linking trait-associated variants to biological functions remains difficult. By re-analyzing large maps of protein QTLs (pQTLs), we found that genes with trans-pQTLs but no cis-pQTLs are under strong selective constraints and are particularly informative in interpreting genome-wide association study (GWAS) loci. We observed that trans-pQTLs and their target proteins are frequently involved in protein–protein interactions (PPIs). Notably, trans-pQTLs are enriched in missense variants and at PPI interfaces, suggesting a key role of PPIs in the trans-regulation of proteome. Using PPI annotations to guide trans-pQTL mapping, we identified 17,662 trans-pQTLs affecting 961 PPI clusters after accounting for blood cell composition effects. These trans-pQTLs colocalized with 36% GWAS loci per trait on average for 27 complex traits, helping in many cases to link GWAS loci to cellular function. Finally, we identified trans-pQTL effects at multiple autoimmune GWAS loci that converge to the same PPIs, pinpointing protein complexes and signaling pathways that show promising therapeutic target potential. Protein quantitative trait loci show enrichment of trans effects among proteins in the same interaction networks and among missense variants at interaction interfaces, highlighting pathways impacted by trait-associated variants.
大多数遗传变异通过影响基因调控来影响复杂性状。然而,尽管分子数量性状位点(qtl)的目录很全面,但将性状相关变异与生物学功能联系起来仍然很困难。通过重新分析蛋白质qtl (pQTLs)的大图谱,我们发现具有反式pQTLs而不具有顺式pQTLs的基因受到强烈的选择约束,并且在解释全基因组关联研究(GWAS)位点方面具有特别的信息。我们观察到反式pqtl及其靶蛋白经常参与蛋白-蛋白相互作用(PPIs)。值得注意的是,反式pqtl在错义变体和PPI界面上富集,这表明PPI在蛋白质组的反式调节中发挥了关键作用。使用PPI注释来指导trans-pQTL定位,在考虑血细胞组成效应后,我们确定了17,662个trans-pQTL,影响961个PPI集群。这些反式pqtl在27个复杂性状中平均与每个性状36%的GWAS位点共定位,有助于在许多情况下将GWAS位点与细胞功能联系起来。最后,我们在多个自身免疫GWAS基因座上发现了反式pqtl效应,这些基因座会聚到相同的PPIs上,精确定位了显示出有希望的治疗靶点潜力的蛋白质复合物和信号通路。蛋白质数量性状位点在相同相互作用网络中的蛋白质之间和相互作用界面的错义变异之间显示出反效应的富集,突出了受性状相关变异影响的途径。
{"title":"Protein–protein interactions shape trans-regulatory impact of genetic variation on protein expression and complex traits","authors":"Jinghui Li,&nbsp;Yang I. Li,&nbsp;Xuanyao Liu","doi":"10.1038/s41588-025-02449-y","DOIUrl":"10.1038/s41588-025-02449-y","url":null,"abstract":"Most genetic variants influence complex traits by affecting gene regulation. Yet, despite comprehensive catalogs of molecular quantitative trait loci (QTLs), linking trait-associated variants to biological functions remains difficult. By re-analyzing large maps of protein QTLs (pQTLs), we found that genes with trans-pQTLs but no cis-pQTLs are under strong selective constraints and are particularly informative in interpreting genome-wide association study (GWAS) loci. We observed that trans-pQTLs and their target proteins are frequently involved in protein–protein interactions (PPIs). Notably, trans-pQTLs are enriched in missense variants and at PPI interfaces, suggesting a key role of PPIs in the trans-regulation of proteome. Using PPI annotations to guide trans-pQTL mapping, we identified 17,662 trans-pQTLs affecting 961 PPI clusters after accounting for blood cell composition effects. These trans-pQTLs colocalized with 36% GWAS loci per trait on average for 27 complex traits, helping in many cases to link GWAS loci to cellular function. Finally, we identified trans-pQTL effects at multiple autoimmune GWAS loci that converge to the same PPIs, pinpointing protein complexes and signaling pathways that show promising therapeutic target potential. Protein quantitative trait loci show enrichment of trans effects among proteins in the same interaction networks and among missense variants at interaction interfaces, highlighting pathways impacted by trait-associated variants.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"77-87"},"PeriodicalIF":29.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02449-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1