The Ovary Structure in Terrestrial Parasitengona Mites: The Case of Trombidiidae (Acariformes: Parasitengona)

IF 1.5 4区 医学 Q2 ANATOMY & MORPHOLOGY Journal of Morphology Pub Date : 2024-09-15 DOI:10.1002/jmor.21774
Anna Derdak, Izabela Jędrzejowska, Joanna Mąkol
{"title":"The Ovary Structure in Terrestrial Parasitengona Mites: The Case of Trombidiidae (Acariformes: Parasitengona)","authors":"Anna Derdak,&nbsp;Izabela Jędrzejowska,&nbsp;Joanna Mąkol","doi":"10.1002/jmor.21774","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Species of mites (Chelicerata: Arachnida) show a great variety of structures of the female gonads. In both evolutionary lines, Acariformes and Parasitiformes, the panoistic ovary, in which all germline cysts differentiate into oocytes, and the meroistic ovary, in which the oocytes grow supported by the nurse cells, have been documented. A less pronounced variation in the gonad structure could be expected at lower systematic levels, hence, we ask about the degree of differences within the family that is subordinate to Acariformes and represents the cohort Parasitengona. Based on the members of Trombidiidae (Acariformes: Trombidiformes, Parasitengona, Trombidioidea), we test the hypothesis that the general ovary type is constant at the family level. Our previous research on the female gonad in <i>Allothrombium fuliginosum</i> revealed that the meroistic ovary occurs in these mites. Here, we proceed with a detailed insight into the ovary structure in <i>A. fuliginosum</i> and examine the structure of the female gonad in other members of Trombidiidae, focusing on the following representatives of its nominotypical genus <i>Trombidium</i>: <i>Trombidium brevimanum</i>, <i>Trombidium holosericeum</i>, <i>Trombidium heterotrichum</i>, and <i>Trombidium latum</i>. For all species, studied with light, fluorescence, and transmission electron microscopy, we could confirm the presence of the meroistic ovary that is highly similar with respect to general architecture. The germline cysts show similarities in general morphology and the mode of germline cell differentiation; they consist of a few nurse cells and one oocyte. The connection between the nurse cells and oocytes is maintained by trophic cords that serve for the transport of organelles and macromolecules. Our results confirm the constancy of the structure of the female gonad at the intrageneric level and provide further support for the hypothesis on the lack of differences at the intrafamily level.</p></div>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21774","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Species of mites (Chelicerata: Arachnida) show a great variety of structures of the female gonads. In both evolutionary lines, Acariformes and Parasitiformes, the panoistic ovary, in which all germline cysts differentiate into oocytes, and the meroistic ovary, in which the oocytes grow supported by the nurse cells, have been documented. A less pronounced variation in the gonad structure could be expected at lower systematic levels, hence, we ask about the degree of differences within the family that is subordinate to Acariformes and represents the cohort Parasitengona. Based on the members of Trombidiidae (Acariformes: Trombidiformes, Parasitengona, Trombidioidea), we test the hypothesis that the general ovary type is constant at the family level. Our previous research on the female gonad in Allothrombium fuliginosum revealed that the meroistic ovary occurs in these mites. Here, we proceed with a detailed insight into the ovary structure in A. fuliginosum and examine the structure of the female gonad in other members of Trombidiidae, focusing on the following representatives of its nominotypical genus Trombidium: Trombidium brevimanum, Trombidium holosericeum, Trombidium heterotrichum, and Trombidium latum. For all species, studied with light, fluorescence, and transmission electron microscopy, we could confirm the presence of the meroistic ovary that is highly similar with respect to general architecture. The germline cysts show similarities in general morphology and the mode of germline cell differentiation; they consist of a few nurse cells and one oocyte. The connection between the nurse cells and oocytes is maintained by trophic cords that serve for the transport of organelles and macromolecules. Our results confirm the constancy of the structure of the female gonad at the intrageneric level and provide further support for the hypothesis on the lack of differences at the intrafamily level.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陆生寄生螨的子房结构:Trombidiidae(蛛形纲:寄生登革热螨)的情况
螨目(螯足目:蛛形纲)的雌性生殖腺结构多种多样。在螨形目和寄生螨形目这两个进化品系中,都有泛型卵巢(所有生殖细胞囊都分化成卵母细胞)和经型卵巢(卵母细胞在滋养细胞的支持下生长)的记录。在较低的系统水平上,性腺结构的差异可能不那么明显,因此,我们想知道从属于蛛形目并代表寄生虫科的这一科内的差异程度。我们以Trombidiidae(蛔形目:Trombidiformes, Parasitengona, Trombidioidea)的成员为基础,检验了一般卵巢类型在科级水平上恒定不变的假说。我们之前对 Allothrombium fuliginosum 的雌性性腺进行的研究发现,这些螨类存在子房。在此,我们将继续详细了解富里基诺苏木螨的子房结构,并研究 Trombidiidae 其他成员的雌性生殖腺结构,重点是其命名型属 Trombidium 的以下代表:Trombidium brevimanum、Trombidium holosericeum、Trombidium heterotrichum 和 Trombidium latum。通过光镜、荧光显微镜和透射电子显微镜对所有物种进行研究,我们可以确认子房的存在,其总体结构非常相似。生殖细胞囊在总体形态和生殖细胞分化模式上表现出相似性;它们由几个滋养细胞和一个卵母细胞组成。哺育细胞和卵母细胞之间的联系由营养索维持,营养索用于运输细胞器和大分子。我们的研究结果证实了雌性生殖腺结构在属内水平上的恒定性,并进一步支持了科内水平无差异的假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Morphology
Journal of Morphology 医学-解剖学与形态学
CiteScore
2.80
自引率
6.70%
发文量
119
审稿时长
1 months
期刊介绍: The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed. The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.
期刊最新文献
Histological Study of Skin Structures From Selected Body Areas in the Varanus komodoensis. An Atlas of Anatomical Variants of the Human Talus. Potential Evolutionary Convergence in Trophic Adaptations of Two Booidean Snake Lineages as Evidenced by Skull Morphology. A Dark Horse: Colonial System of Integration in Ctenostome Bryozoans (Gymnolaemata: Ctenostomata). Modifiable Clinical Dental Impression Methods to Obtain Whole-Mouth and Detailed Dental Traits From Vertebrates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1