Yang Yang, Luis A. Valencia, Chih-Hao Lu, Melissa L. Nakamoto, Ching-Ting Tsai, Chun Liu, Huaxiao Yang, Wei Zhang, Zeinab Jahed, Wan-Ru Lee, Francesca Santoro, Jen Liou, Joseph C. Wu, Bianxiao Cui
{"title":"Plasma membrane curvature regulates the formation of contacts with the endoplasmic reticulum","authors":"Yang Yang, Luis A. Valencia, Chih-Hao Lu, Melissa L. Nakamoto, Ching-Ting Tsai, Chun Liu, Huaxiao Yang, Wei Zhang, Zeinab Jahed, Wan-Ru Lee, Francesca Santoro, Jen Liou, Joseph C. Wu, Bianxiao Cui","doi":"10.1038/s41556-024-01511-x","DOIUrl":null,"url":null,"abstract":"Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER–PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER–PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER–PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER–PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, whereas the ubiquitously expressed extended synaptotagmin-2 does not show a preference for PM curvature. At the mechanistic level, we find that the low-complexity region (LCR) and membrane occupation and recognition nexus (MORN) motifs of junctophilins can bind independently to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins—Eps15 homology domain-containing proteins—that interact with the MORN_LCR motifs and facilitate the preferential tethering of junctophilins to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER–PM contacts in cardiomyocytes and unveil a mechanism for the spatial regulation of ER–PM contacts through PM curvature modulation. Yang et al. show that plasma membrane curvature promotes the site-specific formation of contacts with the endoplasmic reticulum through junctophilin-2 tethers in cardiomyocytes.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1878-1891"},"PeriodicalIF":17.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01511-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-024-01511-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER–PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER–PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER–PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER–PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, whereas the ubiquitously expressed extended synaptotagmin-2 does not show a preference for PM curvature. At the mechanistic level, we find that the low-complexity region (LCR) and membrane occupation and recognition nexus (MORN) motifs of junctophilins can bind independently to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins—Eps15 homology domain-containing proteins—that interact with the MORN_LCR motifs and facilitate the preferential tethering of junctophilins to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER–PM contacts in cardiomyocytes and unveil a mechanism for the spatial regulation of ER–PM contacts through PM curvature modulation. Yang et al. show that plasma membrane curvature promotes the site-specific formation of contacts with the endoplasmic reticulum through junctophilin-2 tethers in cardiomyocytes.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology