Longjie Jiang, Jie Yang, Xiujuan Gao, Jiangfeng Huang, Qian Liu, Ling Fu
{"title":"In vivo imaging of vagal-induced myenteric plexus responses in gastrointestinal tract with an optical window","authors":"Longjie Jiang, Jie Yang, Xiujuan Gao, Jiangfeng Huang, Qian Liu, Ling Fu","doi":"10.1038/s41467-024-52397-0","DOIUrl":null,"url":null,"abstract":"<p>The vagus nerve (VN) extensively innervates the gastric enteric nervous system (ENS), but its influence on gastric ENS functionality and motility in vivo remains unclear due to technical challenges. Here we describe a method for stable, long-term observation of gastric ENS activity and muscle dynamics at cellular resolution, which can also be extended to intestinal applications. This method involves ENS-specific labeling and the implantation of an abdominal wall window for optical recording in male mice. In vivo calcium imaging reveals a linear relationship between vagal stimulation frequency and myenteric neuron activation in gastric antrum. Furthermore, the motility of gastric antrum is significantly enhanced and shows a positive correlation with the intensity and number of activated myenteric neurons. While vagal stimulation also activates proximal colonic myenteric neurons, this activation is not frequency-dependent and does not induce proximal colonic motility. The method and results provide important insights into VN-ENS interactions in vivo, advancing our understanding of gastrointestinal motility regulation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52397-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The vagus nerve (VN) extensively innervates the gastric enteric nervous system (ENS), but its influence on gastric ENS functionality and motility in vivo remains unclear due to technical challenges. Here we describe a method for stable, long-term observation of gastric ENS activity and muscle dynamics at cellular resolution, which can also be extended to intestinal applications. This method involves ENS-specific labeling and the implantation of an abdominal wall window for optical recording in male mice. In vivo calcium imaging reveals a linear relationship between vagal stimulation frequency and myenteric neuron activation in gastric antrum. Furthermore, the motility of gastric antrum is significantly enhanced and shows a positive correlation with the intensity and number of activated myenteric neurons. While vagal stimulation also activates proximal colonic myenteric neurons, this activation is not frequency-dependent and does not induce proximal colonic motility. The method and results provide important insights into VN-ENS interactions in vivo, advancing our understanding of gastrointestinal motility regulation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.