Defect Engineering in CuS1-x Nanoflowers Enables Low-Overpotential and Long-Cycle-Life of Lithium-Oxygen Batteries

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-09-17 DOI:10.1002/smll.202406081
Juanjuan Feng, Adeel Abbas, Lingwen Zhao, Hao Sun, Zhihao Li, Chunlei Wang, Hongchao Wang
{"title":"Defect Engineering in CuS1-x Nanoflowers Enables Low-Overpotential and Long-Cycle-Life of Lithium-Oxygen Batteries","authors":"Juanjuan Feng, Adeel Abbas, Lingwen Zhao, Hao Sun, Zhihao Li, Chunlei Wang, Hongchao Wang","doi":"10.1002/smll.202406081","DOIUrl":null,"url":null,"abstract":"The defect engineering is essential for the development of efficient cathode catalysts for lithium-oxygen batteries. Herein, CuS<sub>1</sub><sub>-x</sub> nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO<sub>2,</sub> and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO<sub>2</sub>, which improves the stability of the intermediate adsorption. Interactively, CuS<sub>1-</sub><i><sub>x</sub></i> catalyst obtains a capacity of 23,227 mAh g<sup>−1</sup> and a cycle life of 225 at 500 mA g<sup>−1</sup>. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406081","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The defect engineering is essential for the development of efficient cathode catalysts for lithium-oxygen batteries. Herein, CuS1-x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1-x catalyst obtains a capacity of 23,227 mAh g−1 and a cycle life of 225 at 500 mA g−1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CuS1-x 纳米流体中的缺陷工程实现了锂氧电池的低过电位和长循环寿命
缺陷工程对于开发高效的锂氧电池阴极催化剂至关重要。本文采用微波水热法制备了 CuS1-x 纳米流体。通过理论和实验分析,观察到了 S 空位,从而增加了 Cu 周围的电荷,改善了对 LiO2 的吸附,降低了过电位。一方面,产生的电子缺陷导致费米级向导带移动,从而增强了电子传导性和离子转移。另一方面,增加的 S 空位提供了大量的 Cu 活性位点,从而增加了 Cu 到 LiO2 的电荷转移,提高了中间吸附的稳定性。交互作用下,CuS1-x 催化剂的容量为 23,227 mAh g-1,在 500 mA g-1 下的循环寿命为 225。通过深入了解先进催化剂中的空位调制,这项工作将有助于获得高效的阴极催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A New Back-End-Of-Line Ferroelectric Field-Effect Transistor Platform via Laser Processing. A Single-Crystal Antimony Trioxide Dielectric for 2D Field-Effect Transistors. Broadband Response Diaphragm Materials for Human Acoustics Engineering. Comprehensive and Robust Anti-Jamming Dual-Electrode Pair Sensor. Electrically Controlled Smart Window for Seasonally Adaptive Thermal Management in Buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1