Gang Liu, Marc Verdegem, Zhangying Ye, Jian Zhao, Jinxing Xiao, Xingguo Liu, Qinlang Liang, Kun Xiang, Songming Zhu
{"title":"Advancing Aquaculture Sustainability: A Comprehensive Review of Biofloc Technology Trends, Innovative Research Approaches, and Future Prospects","authors":"Gang Liu, Marc Verdegem, Zhangying Ye, Jian Zhao, Jinxing Xiao, Xingguo Liu, Qinlang Liang, Kun Xiang, Songming Zhu","doi":"10.1111/raq.12970","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biofloc technology (BFT), initially adapted for shrimp farming in the 1970s, represents a sophisticated ecosystem of microorganisms designed to enhance aquaculture productivity and sustainability. Despite its established history, research into BFT is surprisingly still at an early stage globally. This review conducted a bibliometric analysis of 612 articles from major aquaculture journals spanning 2008–2023 to systematically explore the development, trends, and focal points of BFT research. The analysis revealed that the bulk of significant contributions originates from Brazil and China, and highlighting areas of interest can be categorized into four hotspots, such as (1) efficient nitrogen transformation, (2) biofloc microbiology, (3) biofloc's immunostimulant properties, and (4) the evaluation of research methodologies. At the end, the microecology concept was introduced, and the cross-discipline methods were promoted in the aquaculture field. Notably, much of the BFT research is still at an exploratory phase, with numerous functional bacteria unidentified and optimization strategies for BFT underdeveloped. These gaps present opportunities for enhancing aquaculture through improvements in wastewater management, product quality, safety, and yield. Furthermore, the review notes a growing trend in applying microbiome research and microecological analysis in aquaculture, with high-throughput sequencing data increasingly used to understand microbial interactions and nitrogen transformation within bioflocs. This direction promises to unlock further insights into the complex microbial ecosystems of bioflocs and their applications in sustainable aquaculture.</p>\n </div>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"17 1","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.12970","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Biofloc technology (BFT), initially adapted for shrimp farming in the 1970s, represents a sophisticated ecosystem of microorganisms designed to enhance aquaculture productivity and sustainability. Despite its established history, research into BFT is surprisingly still at an early stage globally. This review conducted a bibliometric analysis of 612 articles from major aquaculture journals spanning 2008–2023 to systematically explore the development, trends, and focal points of BFT research. The analysis revealed that the bulk of significant contributions originates from Brazil and China, and highlighting areas of interest can be categorized into four hotspots, such as (1) efficient nitrogen transformation, (2) biofloc microbiology, (3) biofloc's immunostimulant properties, and (4) the evaluation of research methodologies. At the end, the microecology concept was introduced, and the cross-discipline methods were promoted in the aquaculture field. Notably, much of the BFT research is still at an exploratory phase, with numerous functional bacteria unidentified and optimization strategies for BFT underdeveloped. These gaps present opportunities for enhancing aquaculture through improvements in wastewater management, product quality, safety, and yield. Furthermore, the review notes a growing trend in applying microbiome research and microecological analysis in aquaculture, with high-throughput sequencing data increasingly used to understand microbial interactions and nitrogen transformation within bioflocs. This direction promises to unlock further insights into the complex microbial ecosystems of bioflocs and their applications in sustainable aquaculture.
期刊介绍:
Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.