Precision Self-Assembly of Supramolecules with Heterogeneous Derivatives

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-17 DOI:10.1002/adfm.202410997
Jiawen Zhang, Li Xiang, Binglin Zhou, Yuhao Zhang, Weijie Zhang, Jinyang Jiang, Hongbo Zeng
{"title":"Precision Self-Assembly of Supramolecules with Heterogeneous Derivatives","authors":"Jiawen Zhang, Li Xiang, Binglin Zhou, Yuhao Zhang, Weijie Zhang, Jinyang Jiang, Hongbo Zeng","doi":"10.1002/adfm.202410997","DOIUrl":null,"url":null,"abstract":"Supramolecular self-assembly with well-defined building blocks like lipids, deoxyribonucleic acid, or ligands relies on accessible molecular structures and predictable interactions. However, assembling heterogeneous, undefined blocks, such as disordered proteins, amorphous solids, and catecholic derivatives, remains challenging due to their unpredictable assembly, leading to irreversible aggregation, severe precipitation, and unreliable performance. Here, the <i>first</i> programmable, sustainable, and durable self-assembly strategy of supramolecules with heterogenous is presented, derived blocks via harmonizing multiple molecular interactions. This approach achieves reversible assembly/disassembly, ≈73.7% reduced precipitation, and salt- and alkaline-durability under freeze-thaw cycles in model catecholic derivatives, functioning effectively as robust adhesive primers and hydrogel interfacial strengtheners. Moreover, through molecular force measurements and computational simulations, the <i>first</i> general criterion and benchmark for high precision supramolecular self-assembly is proposed, applicable to complex derivatives and interactions: with blocks bearing multiple binding sites existing, the co-assembling blocks should bear at least two binding sites with minimum binding strength (≈17 to ≈37 kJ mol<sup>−1</sup>) to prevent disassembly. This study paves the way and provides benchmarks for precision self-assembly of diverse supramolecules using heterogeneous derivatives for adhesion technology, nanomaterial synthesis and bio-inspired applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410997","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular self-assembly with well-defined building blocks like lipids, deoxyribonucleic acid, or ligands relies on accessible molecular structures and predictable interactions. However, assembling heterogeneous, undefined blocks, such as disordered proteins, amorphous solids, and catecholic derivatives, remains challenging due to their unpredictable assembly, leading to irreversible aggregation, severe precipitation, and unreliable performance. Here, the first programmable, sustainable, and durable self-assembly strategy of supramolecules with heterogenous is presented, derived blocks via harmonizing multiple molecular interactions. This approach achieves reversible assembly/disassembly, ≈73.7% reduced precipitation, and salt- and alkaline-durability under freeze-thaw cycles in model catecholic derivatives, functioning effectively as robust adhesive primers and hydrogel interfacial strengtheners. Moreover, through molecular force measurements and computational simulations, the first general criterion and benchmark for high precision supramolecular self-assembly is proposed, applicable to complex derivatives and interactions: with blocks bearing multiple binding sites existing, the co-assembling blocks should bear at least two binding sites with minimum binding strength (≈17 to ≈37 kJ mol−1) to prevent disassembly. This study paves the way and provides benchmarks for precision self-assembly of diverse supramolecules using heterogeneous derivatives for adhesion technology, nanomaterial synthesis and bio-inspired applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超分子与异质衍生物的精密自组装
利用脂质、脱氧核糖核酸或配体等定义明确的构件进行超分子自组装,需要依赖可获得的分子结构和可预测的相互作用。然而,组装异质、未定义的构件(如无序蛋白质、无定形固体和儿茶酚衍生物)仍然具有挑战性,因为它们的组装不可预测,会导致不可逆的聚集、严重沉淀和不可靠的性能。本文首次提出了一种可编程、可持续和持久的异质超分子自组装策略,通过协调多种分子间的相互作用,衍生出各种组块。这种方法在模型儿茶酚衍生物的冻融循环中实现了可逆组装/拆卸,减少了≈73.7%的沉淀,并具有盐和碱耐久性,可有效用作强力粘合剂引物和水凝胶界面强化剂。此外,通过分子力测量和计算模拟,首次提出了适用于复杂衍生物和相互作用的高精度超分子自组装的一般标准和基准:在存在多个结合位点的嵌段中,共组装嵌段至少应具有两个结合强度最低的结合位点(≈17 至 ≈37 kJ mol-1),以防止解体。这项研究为利用异质衍生物精确自组装各种超分子铺平了道路,并为粘附技术、纳米材料合成和生物启发应用提供了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1