Quantitative sustainability assessment for in-situ electrical resistance heating coupled with steam enhanced extraction: An effective approach for the development of green remediation technologies
{"title":"Quantitative sustainability assessment for in-situ electrical resistance heating coupled with steam enhanced extraction: An effective approach for the development of green remediation technologies","authors":"","doi":"10.1016/j.watres.2024.122450","DOIUrl":null,"url":null,"abstract":"<div><p>There is a lack of quantitative methodology for the sustainability assessment based on field data in the process of innovative technology development for groundwater remediation. This study developed a quantitative assessment framework, a model based on the life cycle assessment integrated with best management practices (LCA-BMPs), to evaluate the environmental, economic, and social sustainability of <em>in-situ</em> electrical resistance heating coupled with steam enhanced extraction (ERH-SEE), an innovative technology being demonstrated in the field. The results indicated that ERH-SEE offered better environmental sustainability performance compared to ERH only, with a reduction in carbon emissions by 52.6 %. ERH-SEE also significantly reduces human toxicity, resource consumption, and ecosystem impacts under the same remediation scenarios. The further assessment indicated that if taking the renewable energy share in energy structure in different countries into consideration, higher shares of renewable energy used in energy supplies can substantially reduce the environmental footprint of the studied scenarios. The economic sustainability assessment results showed that ERH-SEE was more sustainable than ERH only, as it reduces direct economic costs by 35.7 % and provides higher levels of worker employment. Regarding the social sustainability, ERH-SEE involved more complex operational procedures and presented more health risk exposure scenarios compared to ERH only, resulting in slightly more pronounced worker safety issues. Based on the final normalized results, the overall sustainability results of ERH-SEE and ERH only were 78.4 and 61.5, respectively, demonstrating that the sustainability performance of ERH-SEE was better than ERH only. It can be concluded that the application of ERH-SEE in groundwater remediation where significant heterogeneities occur in subsurface can increase the sustainability in developing countries, due to the lower percentage in renewable electricity in the energy supply. This study provided new insights into the technology development for the remediation of soil and groundwater contamination.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424013496","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is a lack of quantitative methodology for the sustainability assessment based on field data in the process of innovative technology development for groundwater remediation. This study developed a quantitative assessment framework, a model based on the life cycle assessment integrated with best management practices (LCA-BMPs), to evaluate the environmental, economic, and social sustainability of in-situ electrical resistance heating coupled with steam enhanced extraction (ERH-SEE), an innovative technology being demonstrated in the field. The results indicated that ERH-SEE offered better environmental sustainability performance compared to ERH only, with a reduction in carbon emissions by 52.6 %. ERH-SEE also significantly reduces human toxicity, resource consumption, and ecosystem impacts under the same remediation scenarios. The further assessment indicated that if taking the renewable energy share in energy structure in different countries into consideration, higher shares of renewable energy used in energy supplies can substantially reduce the environmental footprint of the studied scenarios. The economic sustainability assessment results showed that ERH-SEE was more sustainable than ERH only, as it reduces direct economic costs by 35.7 % and provides higher levels of worker employment. Regarding the social sustainability, ERH-SEE involved more complex operational procedures and presented more health risk exposure scenarios compared to ERH only, resulting in slightly more pronounced worker safety issues. Based on the final normalized results, the overall sustainability results of ERH-SEE and ERH only were 78.4 and 61.5, respectively, demonstrating that the sustainability performance of ERH-SEE was better than ERH only. It can be concluded that the application of ERH-SEE in groundwater remediation where significant heterogeneities occur in subsurface can increase the sustainability in developing countries, due to the lower percentage in renewable electricity in the energy supply. This study provided new insights into the technology development for the remediation of soil and groundwater contamination.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.