Benoît Commerçon, Francesco Lovascio, Elliot Lynch, Enrico Ragusa
{"title":"Discs are born eccentric","authors":"Benoît Commerçon, Francesco Lovascio, Elliot Lynch, Enrico Ragusa","doi":"10.1051/0004-6361/202449610","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Recent observations have begun probing the early phases of disc formation, but little data yet exists on disc structure and morphology of Class 0 objects. Using simulations, we are able to lay out predictions of disc morphologies expected in future surveys of young discs. Based on detailed simulations of ab initio star formation by core collapse, we predict that early discs must be eccentric.<i>Aims.<i/> In this Letter, we study the morphology and, in particular, the eccentricity of discs formed in non-ideal magnetohydrodynamic (MHD) collapse simulations. We attempt to show that discs formed by cloud collapse are likely to be eccentric.<i>Methods.<i/> We ran non-ideal MHD collapse simulations in the adaptive mesh refinement code RAMSES with radiative transfer. We used state-of-the-art analysis methods to measure the disc eccentricity.<i>Results.<i/> We find that despite no asymmetry in the initial conditions, the discs formed are eccentric, with eccentricities on the order of 0.1.<i>Conclusions.<i/> These results may have important implications for protoplanetary disc dynamics and planet formation. The presence of eccentricity in young discs that is not seen at later stages of disc evolution is in tension with current viscous eccentricity damping models. This implies that there may be an as-yet undiscovered circularisation mechanism in circumstellar discs.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202449610","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Context. Recent observations have begun probing the early phases of disc formation, but little data yet exists on disc structure and morphology of Class 0 objects. Using simulations, we are able to lay out predictions of disc morphologies expected in future surveys of young discs. Based on detailed simulations of ab initio star formation by core collapse, we predict that early discs must be eccentric.Aims. In this Letter, we study the morphology and, in particular, the eccentricity of discs formed in non-ideal magnetohydrodynamic (MHD) collapse simulations. We attempt to show that discs formed by cloud collapse are likely to be eccentric.Methods. We ran non-ideal MHD collapse simulations in the adaptive mesh refinement code RAMSES with radiative transfer. We used state-of-the-art analysis methods to measure the disc eccentricity.Results. We find that despite no asymmetry in the initial conditions, the discs formed are eccentric, with eccentricities on the order of 0.1.Conclusions. These results may have important implications for protoplanetary disc dynamics and planet formation. The presence of eccentricity in young discs that is not seen at later stages of disc evolution is in tension with current viscous eccentricity damping models. This implies that there may be an as-yet undiscovered circularisation mechanism in circumstellar discs.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.